Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
Add more filters

Publication year range
1.
Cell ; 187(18): 5081-5101.e19, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38996528

ABSTRACT

In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.


Subject(s)
Axons , Drosophila Proteins , Drosophila melanogaster , Nerve Tissue Proteins , Olfactory Receptor Neurons , Signal Transduction , Synapses , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Nerve Tissue Proteins/metabolism , Olfactory Receptor Neurons/metabolism , Axons/metabolism , Synapses/metabolism , Actins/metabolism , GTPase-Activating Proteins/metabolism , Brain/metabolism , Dendrites/metabolism , rac1 GTP-Binding Protein/metabolism , Tenascin , rac GTP-Binding Proteins
2.
Cell ; 186(6): 1195-1211.e19, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36796363

ABSTRACT

Social interactions require awareness and understanding of the behavior of others. Mirror neurons, cells representing an action by self and others, have been proposed to be integral to the cognitive substrates that enable such awareness and understanding. Mirror neurons of the primate neocortex represent skilled motor tasks, but it is unclear if they are critical for the actions they embody, enable social behaviors, or exist in non-cortical regions. We demonstrate that the activity of individual VMHvlPR neurons in the mouse hypothalamus represents aggression performed by self and others. We used a genetically encoded mirror-TRAP strategy to functionally interrogate these aggression-mirroring neurons. We find that their activity is essential for fighting and that forced activation of these cells triggers aggressive displays by mice, even toward their mirror image. Together, we have discovered a mirroring center in an evolutionarily ancient region that provides a subcortical cognitive substrate essential for a social behavior.


Subject(s)
Aggression , Hypothalamus , Mirror Neurons , Animals , Mice , Aggression/physiology , Hypothalamus/cytology , Social Behavior
3.
Cell ; 186(18): 3862-3881.e28, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37572660

ABSTRACT

Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.


Subject(s)
Neural Pathways , Sexual Behavior, Animal , Animals , Male , Neurons/physiology , Reward , Sexual Behavior, Animal/physiology , Mice
4.
Cell ; 185(17): 3079-3081, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35985284

ABSTRACT

Mosquitoes are strongly attracted to humans, and their bites not only cause intense itch but can beget severe diseases. In this issue of Cell, Herre et al. reveal that non-canonical olfactory circuit organization and coding likely endow mosquitoes with a robust ability to locate human hosts.


Subject(s)
Aedes , Anopheles , Animals , Humans , Odorants , Pheromones
5.
Cell ; 184(20): 5107-5121.e14, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34551316

ABSTRACT

Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 30 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics-corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibiting "exploring branches" consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral axons in contralateral target selection and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.


Subject(s)
Olfactory Pathways/cytology , Olfactory Pathways/diagnostic imaging , Time-Lapse Imaging , Animals , Axons/physiology , Cells, Cultured , Dendrites/physiology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Microtubules/metabolism , Olfactory Receptor Neurons/physiology , Time Factors
6.
Cell ; 184(14): 3731-3747.e21, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34214470

ABSTRACT

In motor neuroscience, state changes are hypothesized to time-lock neural assemblies coordinating complex movements, but evidence for this remains slender. We tested whether a discrete change from more autonomous to coherent spiking underlies skilled movement by imaging cerebellar Purkinje neuron complex spikes in mice making targeted forelimb-reaches. As mice learned the task, millimeter-scale spatiotemporally coherent spiking emerged ipsilateral to the reaching forelimb, and consistent neural synchronization became predictive of kinematic stereotypy. Before reach onset, spiking switched from more disordered to internally time-locked concerted spiking and silence. Optogenetic manipulations of cerebellar feedback to the inferior olive bi-directionally modulated neural synchronization and reaching direction. A simple model explained the reorganization of spiking during reaching as reflecting a discrete bifurcation in olivary network dynamics. These findings argue that to prepare learned movements, olivo-cerebellar circuits enter a self-regulated, synchronized state promoting motor coordination. State changes facilitating behavioral transitions may generalize across neural systems.


Subject(s)
Movement/physiology , Nerve Net/physiology , Action Potentials/physiology , Animals , Calcium/metabolism , Cerebellum/physiology , Cortical Synchronization , Forelimb/physiology , Interneurons/physiology , Learning , Mice, Inbred C57BL , Mice, Transgenic , Models, Neurological , Motor Activity/physiology , Olivary Nucleus/physiology , Optogenetics , Purkinje Cells/physiology , Stereotyped Behavior , Task Performance and Analysis
7.
Cell ; 184(2): 489-506.e26, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33338423

ABSTRACT

Single-cell transcriptomics has been widely applied to classify neurons in the mammalian brain, while systems neuroscience has historically analyzed the encoding properties of cortical neurons without considering cell types. Here we examine how specific transcriptomic types of mouse prefrontal cortex (PFC) projection neurons relate to axonal projections and encoding properties across multiple cognitive tasks. We found that most types projected to multiple targets, and most targets received projections from multiple types, except PFC→PAG (periaqueductal gray). By comparing Ca2+ activity of the molecularly homogeneous PFC→PAG type against two heterogeneous classes in several two-alternative choice tasks in freely moving mice, we found that all task-related signals assayed were qualitatively present in all examined classes. However, PAG-projecting neurons most potently encoded choice in cued tasks, whereas contralateral PFC-projecting neurons most potently encoded reward context in an uncued task. Thus, task signals are organized redundantly, but with clear quantitative biases across cells of specific molecular-anatomical characteristics.


Subject(s)
Cognition/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Task Performance and Analysis , Animals , Calcium/metabolism , Choice Behavior , Cues , Imaging, Three-Dimensional , Integrases/metabolism , Mice, Inbred C57BL , Odorants , Optogenetics , Periaqueductal Gray/physiology , Reward , Single-Cell Analysis , Transcriptome/genetics
8.
Cell ; 182(1): 1-4, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32649872

ABSTRACT

Undergraduate researchers are the next-generation scientists. Here, we call for more attention from our community to the proper training of undergraduates in biomedical research laboratories. By dissecting common pitfalls, we suggest how to better mentor undergraduates and prepare them for flourishing careers.


Subject(s)
Biomedical Research/education , Research Personnel , Communication , Mentoring , Mentors
9.
Cell ; 180(2): 373-386.e15, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31955847

ABSTRACT

Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.


Subject(s)
Olfactory Pathways/metabolism , Olfactory Receptor Neurons/metabolism , Proteomics/methods , Animals , Axons/metabolism , Brain/metabolism , Dendrites/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental/genetics , Membrane Proteins/metabolism , Neurogenesis/physiology , Olfactory Nerve/metabolism , Olfactory Pathways/cytology , Olfactory Pathways/physiology , Receptors, Lipoprotein/metabolism , Smell/physiology
10.
Cell ; 182(6): 1372-1376, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32946777

ABSTRACT

Large scientific projects in genomics and astronomy are influential not because they answer any single question but because they enable investigation of continuously arising new questions from the same data-rich sources. Advances in automated mapping of the brain's synaptic connections (connectomics) suggest that the complicated circuits underlying brain function are ripe for analysis. We discuss benefits of mapping a mouse brain at the level of synapses.


Subject(s)
Brain/physiology , Connectome/methods , Nerve Net/physiology , Neurons/physiology , Synapses/physiology , Animals , Mice
11.
Cell ; 177(3): 669-682.e24, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30929904

ABSTRACT

Throughout mammalian neocortex, layer 5 pyramidal (L5) cells project via the pons to a vast number of cerebellar granule cells (GrCs), forming a fundamental pathway. Yet, it is unknown how neuronal dynamics are transformed through the L5→GrC pathway. Here, by directly comparing premotor L5 and GrC activity during a forelimb movement task using dual-site two-photon Ca2+ imaging, we found that in expert mice, L5 and GrC dynamics were highly similar. L5 cells and GrCs shared a common set of task-encoding activity patterns, possessed similar diversity of responses, and exhibited high correlations comparable to local correlations among L5 cells. Chronic imaging revealed that these dynamics co-emerged in cortex and cerebellum over learning: as behavioral performance improved, initially dissimilar L5 cells and GrCs converged onto a shared, low-dimensional, task-encoding set of neural activity patterns. Thus, a key function of cortico-cerebellar communication is the propagation of shared dynamics that emerge during learning.


Subject(s)
Cerebellum/metabolism , Neocortex/metabolism , Animals , Behavior, Animal , Calcium/metabolism , Forelimb/physiology , Mice , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton , Neocortex/pathology , Opsins/genetics , Opsins/metabolism , Pyramidal Cells/metabolism
14.
Cell ; 175(2): 472-487.e20, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30146164

ABSTRACT

The dorsal raphe (DR) constitutes a major serotonergic input to the forebrain and modulates diverse functions and brain states, including mood, anxiety, and sensory and motor functions. Most functional studies to date have treated DR serotonin neurons as a single population. Using viral-genetic methods, we found that subcortical- and cortical-projecting serotonin neurons have distinct cell-body distributions within the DR and differentially co-express a vesicular glutamate transporter. Further, amygdala- and frontal-cortex-projecting DR serotonin neurons have largely complementary whole-brain collateralization patterns, receive biased inputs from presynaptic partners, and exhibit opposite responses to aversive stimuli. Gain- and loss-of-function experiments suggest that amygdala-projecting DR serotonin neurons promote anxiety-like behavior, whereas frontal-cortex-projecting neurons promote active coping in the face of challenge. These results provide compelling evidence that the DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioral functions.


Subject(s)
Dorsal Raphe Nucleus/anatomy & histology , Dorsal Raphe Nucleus/physiology , Serotonin/physiology , Adaptation, Psychological/physiology , Amygdala/physiology , Animals , Anxiety/physiopathology , Brain/physiology , Dorsal Raphe Nucleus/metabolism , Female , Frontal Lobe/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Serotonin/metabolism
15.
Cell ; 170(4): 601-602, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28802035

ABSTRACT

The development of CRISPR/Cas9-mediated gene knockout in two ant species opens a new window into exploring how social insects use olfactory cues to organize their collective behavior.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Animals , Gene Knockout Techniques , Insecta/genetics
16.
Cell ; 171(5): 1206-1220.e22, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29149607

ABSTRACT

The definition of neuronal type and how it relates to the transcriptome are open questions. Drosophila olfactory projection neurons (PNs) are among the best-characterized neuronal types: different PN classes target dendrites to distinct olfactory glomeruli, while PNs of the same class exhibit indistinguishable anatomical and physiological properties. Using single-cell RNA sequencing, we comprehensively characterized the transcriptomes of most PN classes and unequivocally mapped transcriptomes to specific olfactory function for six classes. Transcriptomes of closely related PN classes exhibit the largest differences during circuit assembly but become indistinguishable in adults, suggesting that neuronal subtype diversity peaks during development. Transcription factors and cell-surface molecules are the most differentially expressed genes between classes and are highly informative in encoding cell identity, enabling us to identify a new lineage-specific transcription factor that instructs PN dendrite targeting. These findings establish that neuronal transcriptomic identity corresponds with anatomical and physiological identity defined by connectivity and function.


Subject(s)
Drosophila melanogaster/metabolism , Neurons/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Brain/cytology , Brain/metabolism , Cluster Analysis , Dendrites/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Gene Expression Profiling , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Organ Specificity , Pupa/cytology , Pupa/metabolism , Transcription Factors/metabolism
17.
Cell ; 165(7): 1776-1788, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27238022

ABSTRACT

A major challenge in understanding the cellular diversity of the brain has been linking activity during behavior with standard cellular typology. For example, it has not been possible to determine whether principal neurons in prefrontal cortex active during distinct experiences represent separable cell types, and it is not known whether these differentially active cells exert distinct causal influences on behavior. Here, we develop quantitative hydrogel-based technologies to connect activity in cells reporting on behavioral experience with measures for both brain-wide wiring and molecular phenotype. We find that positive and negative-valence experiences in prefrontal cortex are represented by cell populations that differ in their causal impact on behavior, long-range wiring, and gene expression profiles, with the major discriminant being expression of the adaptation-linked gene NPAS4. These findings illuminate cellular logic of prefrontal cortex information processing and natural adaptive behavior and may point the way to cell-type-specific understanding and treatment of disease-associated states.


Subject(s)
Behavior, Animal , Brain Mapping/methods , Prefrontal Cortex/cytology , Animals , Appetitive Behavior , Basic Helix-Loop-Helix Transcription Factors/genetics , Cocaine/administration & dosage , Electroshock , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Prefrontal Cortex/metabolism
18.
Cell ; 162(3): 622-34, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26232228

ABSTRACT

Dopamine (DA) neurons in the midbrain ventral tegmental area (VTA) integrate complex inputs to encode multiple signals that influence motivated behaviors via diverse projections. Here, we combine axon-initiated viral transduction with rabies-mediated trans-synaptic tracing and Cre-based cell-type-specific targeting to systematically map input-output relationships of VTA-DA neurons. We found that VTA-DA (and VTA-GABA) neurons receive excitatory, inhibitory, and modulatory input from diverse sources. VTA-DA neurons projecting to different forebrain regions exhibit specific biases in their input selection. VTA-DA neurons projecting to lateral and medial nucleus accumbens innervate largely non-overlapping striatal targets, with the latter also sending extensive extra-striatal axon collaterals. Using electrophysiology and behavior, we validated new circuits identified in our tracing studies, including a previously unappreciated top-down reinforcing circuit from anterior cortex to lateral nucleus accumbens via VTA-DA neurons. This study highlights the utility of our viral-genetic tracing strategies to elucidate the complex neural substrates that underlie motivated behaviors.


Subject(s)
Neural Pathways , Neurons/metabolism , Ventral Tegmental Area/cytology , Ventral Tegmental Area/metabolism , Animals , Brain Mapping , Dopamine/metabolism , Mice , Mice, Inbred C57BL , Nucleus Accumbens/metabolism , Rabies virus , gamma-Aminobutyric Acid/metabolism
19.
Cell ; 162(3): 635-47, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26232229

ABSTRACT

Recent progress in understanding the diversity of midbrain dopamine neurons has highlighted the importance--and the challenges--of defining mammalian neuronal cell types. Although neurons may be best categorized using inclusive criteria spanning biophysical properties, wiring of inputs, wiring of outputs, and activity during behavior, linking all of these measurements to cell types within the intact brains of living mammals has been difficult. Here, using an array of intact-brain circuit interrogation tools, including CLARITY, COLM, optogenetics, viral tracing, and fiber photometry, we explore the diversity of dopamine neurons within the substantia nigra pars compacta (SNc). We identify two parallel nigrostriatal dopamine neuron subpopulations differing in biophysical properties, input wiring, output wiring to dorsomedial striatum (DMS) versus dorsolateral striatum (DLS), and natural activity patterns during free behavior. Our results reveal independently operating nigrostriatal information streams, with implications for understanding the logic of dopaminergic feedback circuits and the diversity of mammalian neuronal cell types.


Subject(s)
Neural Pathways , Neurons/metabolism , Substantia Nigra/metabolism , Animals , Brain Mapping , Dopamine/metabolism , Mice , Mice, Inbred C57BL , Reward , Shock
20.
Cell ; 159(4): 775-88, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417155

ABSTRACT

Radial glial progenitors (RGPs) are responsible for producing nearly all neocortical neurons. To gain insight into the patterns of RGP division and neuron production, we quantitatively analyzed excitatory neuron genesis in the mouse neocortex using Mosaic Analysis with Double Markers, which provides single-cell resolution of progenitor division patterns and potential in vivo. We found that RGPs progress through a coherent program in which their proliferative potential diminishes in a predictable manner. Upon entry into the neurogenic phase, individual RGPs produce ?8-9 neurons distributed in both deep and superficial layers, indicating a unitary output in neuronal production. Removal of OTX1, a transcription factor transiently expressed in RGPs, results in both deep- and superficial-layer neuron loss and a reduction in neuronal unit size. Moreover, ?1/6 of neurogenic RGPs proceed to produce glia. These results suggest that progenitor behavior and histogenesis in the mammalian neocortex conform to a remarkably orderly and deterministic program.


Subject(s)
Neocortex/cytology , Neurogenesis , Animals , Mice , Neuroglia/metabolism , Neurons/metabolism , Otx Transcription Factors/metabolism , Staining and Labeling/methods , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL