Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 460
Filter
Add more filters

Publication year range
1.
Cell ; 185(10): 1630-1645, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35504280

ABSTRACT

Atherosclerosis is an inflammatory disease of the large arteries that is the major cause of cardiovascular disease (CVD) and stroke. Here, we review the current understanding of the molecular, cellular, genetic, and environmental contributions to atherosclerosis, from both individual pathway and systems perspectives. We place an emphasis on recent developments, some of which have yielded unexpected biology, including previously unknown heterogeneity of inflammatory and smooth muscle cells in atherosclerotic lesions, roles for senescence and clonal hematopoiesis, and links to the gut microbiome.


Subject(s)
Atherosclerosis , Gastrointestinal Microbiome , Arteries/metabolism , Atherosclerosis/metabolism , Clonal Hematopoiesis , Humans , Myocytes, Smooth Muscle/metabolism
2.
Cell ; 184(5): 1139-1141, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33667367

ABSTRACT

Clonal hematopoiesis, defined as the presence of expanded somatic blood cell clones, is associated with about a doubling in the risk of coronary heart disease in humans. Heyde and colleagues now provide evidence that clonal hematopoiesis results largely from increased stem cell proliferation, which is, in turn, stimulated by atherosclerosis.


Subject(s)
Atherosclerosis , Hematopoiesis , Clonal Hematopoiesis , Humans , Mutation
3.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32621799

ABSTRACT

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Subject(s)
Cicatrix/metabolism , Collagen Type V/deficiency , Collagen Type V/metabolism , Heart Injuries/metabolism , Myocardial Contraction/genetics , Myofibroblasts/metabolism , Animals , Cicatrix/genetics , Cicatrix/physiopathology , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Collagen Type III/genetics , Collagen Type III/metabolism , Collagen Type V/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Female , Fibrosis/genetics , Fibrosis/metabolism , Gene Expression Regulation/genetics , Integrins/antagonists & inhibitors , Integrins/genetics , Integrins/metabolism , Isoproterenol/pharmacology , Male , Mechanotransduction, Cellular/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Atomic Force/instrumentation , Microscopy, Electron, Transmission , Myocardial Contraction/drug effects , Myofibroblasts/cytology , Myofibroblasts/pathology , Myofibroblasts/ultrastructure , Principal Component Analysis , Proteomics , RNA-Seq , Single-Cell Analysis
4.
Cell ; 172(1-2): 218-233.e17, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29249357

ABSTRACT

Signaling pathways that promote adipose tissue thermogenesis are well characterized, but the limiters of energy expenditure are largely unknown. Here, we show that ablation of the anti-inflammatory cytokine IL-10 improves insulin sensitivity, protects against diet-induced obesity, and elicits the browning of white adipose tissue. Mechanistic studies define bone marrow cells as the source of the IL-10 signal and adipocytes as the target cell type mediating these effects. IL-10 receptor alpha is highly enriched in mature adipocytes and is induced in response to differentiation, obesity, and aging. Assay for transposase-accessible chromatin sequencing (ATAC-seq), ChIP-seq, and RNA-seq reveal that IL-10 represses the transcription of thermogenic genes in adipocytes by altering chromatin accessibility and inhibiting ATF and C/EBPß recruitment to key enhancer regions. These findings expand our understanding of the relationship between inflammatory signaling pathways and adipose tissue function and provide insight into the physiological control of thermogenesis that could inform future therapy.


Subject(s)
Adipocytes/metabolism , Chromatin Assembly and Disassembly , Energy Metabolism , Interleukin-10/metabolism , Thermogenesis , Activating Transcription Factors/metabolism , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Cells, Cultured , Interleukin-10/genetics , Male , Mice , Mice, Inbred C57BL , Signal Transduction
5.
Cell ; 165(1): 111-124, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26972052

ABSTRACT

Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (n > 4,000) independently predicted incident (3 years) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced sub-maximal stimulus-dependent platelet activation from multiple agonists through augmented Ca(2+) release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk.


Subject(s)
Blood Platelets/metabolism , Gastrointestinal Microbiome , Methylamines/metabolism , Thrombosis/metabolism , Animals , Calcium/metabolism , Carotid Artery Injuries/pathology , Cecum/microbiology , Chlorides , Choline/metabolism , Diet , Female , Ferric Compounds , Germ-Free Life , Humans , Methylamines/blood , Mice , Mice, Inbred C57BL , Thrombosis/pathology
6.
Cell ; 163(7): 1585-95, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26687352

ABSTRACT

Trimethylamine (TMA) N-oxide (TMAO), a gut-microbiota-dependent metabolite, both enhances atherosclerosis in animal models and is associated with cardiovascular risks in clinical studies. Here, we investigate the impact of targeted inhibition of the first step in TMAO generation, commensal microbial TMA production, on diet-induced atherosclerosis. A structural analog of choline, 3,3-dimethyl-1-butanol (DMB), is shown to non-lethally inhibit TMA formation from cultured microbes, to inhibit distinct microbial TMA lyases, and to both inhibit TMA production from physiologic polymicrobial cultures (e.g., intestinal contents, human feces) and reduce TMAO levels in mice fed a high-choline or L-carnitine diet. DMB inhibited choline diet-enhanced endogenous macrophage foam cell formation and atherosclerotic lesion development in apolipoprotein e(-/-) mice without alterations in circulating cholesterol levels. The present studies suggest that targeting gut microbial production of TMA specifically and non-lethal microbial inhibitors in general may serve as a potential therapeutic approach for the treatment of cardiometabolic diseases.


Subject(s)
Atherosclerosis/drug therapy , Choline/analogs & derivatives , Gastrointestinal Tract/microbiology , Hexanols/administration & dosage , Lyases/antagonists & inhibitors , Methylamines/metabolism , Animals , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Choline/metabolism , Diet , Feces/chemistry , Foam Cells/metabolism , Humans , Lyases/metabolism , Mice , Mice, Inbred C57BL , Microbiota
7.
Nature ; 620(7972): 192-199, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37495690

ABSTRACT

Sympathetic activation during cold exposure increases adipocyte thermogenesis via the expression of mitochondrial protein uncoupling protein 1 (UCP1)1. The propensity of adipocytes to express UCP1 is under a critical influence of the adipose microenvironment and varies between sexes and among various fat depots2-7. Here we report that mammary gland ductal epithelial cells in the adipose niche regulate cold-induced adipocyte UCP1 expression in female mouse subcutaneous white adipose tissue (scWAT). Single-cell RNA sequencing shows that glandular luminal epithelium subtypes express transcripts that encode secretory factors controlling adipocyte UCP1 expression under cold conditions. We term these luminal epithelium secretory factors 'mammokines'. Using 3D visualization of whole-tissue immunofluorescence, we reveal sympathetic nerve-ductal contact points. We show that mammary ducts activated by sympathetic nerves limit adipocyte UCP1 expression via the mammokine lipocalin 2. In vivo and ex vivo ablation of mammary duct epithelium enhance the cold-induced adipocyte thermogenic gene programme in scWAT. Since the mammary duct network extends throughout most of the scWAT in female mice, females show markedly less scWAT UCP1 expression, fat oxidation, energy expenditure and subcutaneous fat mass loss compared with male mice, implicating sex-specific roles of mammokines in adipose thermogenesis. These results reveal a role of sympathetic nerve-activated glandular epithelium in adipocyte UCP1 expression and suggest that mammary duct luminal epithelium has an important role in controlling glandular adiposity.


Subject(s)
Adipocytes , Adipose Tissue, White , Epithelium , Mammary Glands, Animal , Thermogenesis , Animals , Female , Male , Mice , Adipocytes/metabolism , Adipose Tissue, White/cytology , Adipose Tissue, White/metabolism , Epithelium/innervation , Epithelium/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/innervation , Mammary Glands, Animal/physiology , Cold Temperature , Sympathetic Nervous System/physiology , Energy Metabolism , Oxidation-Reduction , Sex Characteristics
8.
Cell ; 151(3): 658-70, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23101632

ABSTRACT

Many common diseases have an important inflammatory component mediated in part by macrophages. Here we used a systems genetics strategy to examine the role of common genetic variation in macrophage responses to inflammatory stimuli. We examined genome-wide transcript levels in macrophages from 92 strains of the Hybrid Mouse Diversity Panel. We exposed macrophages to control media, bacterial lipopolysaccharide (LPS), or oxidized phospholipids. We performed association mapping under each condition and identified several thousand expression quantitative trait loci (eQTL), gene-by-environment interactions, and eQTL "hot spots" that specifically control LPS responses. We used siRNA knockdown of candidate genes to validate an eQTL hot spot in chromosome 8 and identified the gene 2310061C15Rik as a regulator of inflammatory responses in macrophages. We have created a public database where the data presented here can be used as a resource for understanding many common inflammatory traits that are modeled in the mouse and for the dissection of regulatory relationships between genes.


Subject(s)
Gene-Environment Interaction , Inflammation/immunology , Macrophages/immunology , Mice/genetics , Quantitative Trait Loci , Animals , Cells, Cultured , Gene Knockdown Techniques , Lipopolysaccharides/immunology , Macrophages/metabolism , Male , Mice/immunology , Mice, Inbred Strains , Species Specificity , Specific Pathogen-Free Organisms , Systems Biology/methods
9.
Nature ; 599(7884): 296-301, 2021 11.
Article in English | MEDLINE | ID: mdl-34707293

ABSTRACT

Adipocytes increase energy expenditure in response to prolonged sympathetic activation via persistent expression of uncoupling protein 1 (UCP1)1,2. Here we report that the regulation of glycogen metabolism by catecholamines is critical for UCP1 expression. Chronic ß-adrenergic activation leads to increased glycogen accumulation in adipocytes expressing UCP1. Adipocyte-specific deletion of a scaffolding protein, protein targeting to glycogen (PTG), reduces glycogen levels in beige adipocytes, attenuating UCP1 expression and responsiveness to cold or ß-adrenergic receptor-stimulated weight loss in obese mice. Unexpectedly, we observed that glycogen synthesis and degradation are increased in response to catecholamines, and that glycogen turnover is required to produce reactive oxygen species leading to the activation of p38 MAPK, which drives UCP1 expression. Thus, glycogen has a key regulatory role in adipocytes, linking glucose metabolism to thermogenesis.


Subject(s)
Adipocytes/metabolism , Glucose/metabolism , Glycogen/metabolism , Homeostasis , Thermogenesis , Adaptation, Physiological , Adipocytes, Beige/metabolism , Animals , Cold Temperature , Energy Metabolism , Female , Humans , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Knockout , Uncoupling Protein 1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Mol Cell ; 75(3): 644-660.e5, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398325

ABSTRACT

Cell-cell communication via ligand-receptor signaling is a fundamental feature of complex organs. Despite this, the global landscape of intercellular signaling in mammalian liver has not been elucidated. Here we perform single-cell RNA sequencing on non-parenchymal cells isolated from healthy and NASH mouse livers. Secretome gene analysis revealed a highly connected network of intrahepatic signaling and disruption of vascular signaling in NASH. We uncovered the emergence of NASH-associated macrophages (NAMs), which are marked by high expression of triggering receptors expressed on myeloid cells 2 (Trem2), as a feature of mouse and human NASH that is linked to disease severity and highly responsive to pharmacological and dietary interventions. Finally, hepatic stellate cells (HSCs) serve as a hub of intrahepatic signaling via HSC-derived stellakines and their responsiveness to vasoactive hormones. These results provide unprecedented insights into the landscape of intercellular crosstalk and reprogramming of liver cells in health and disease.


Subject(s)
Cell Communication/genetics , Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Sequence Analysis, RNA , Animals , Cellular Reprogramming/genetics , Disease Models, Animal , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , Ligands , Liver/pathology , Macrophages/metabolism , Macrophages/pathology , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction/genetics , Single-Cell Analysis
11.
Circ Res ; 134(4): 371-389, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38264909

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS: Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS: The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS: Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.


Subject(s)
Cardiomyopathies , Heart Failure , Propionates , Sirtuin 3 , Humans , Mice , Animals , Heart Failure/metabolism , Stroke Volume/physiology , NAD , Sirtuin 3/genetics , Indoles/pharmacology , Niacinamide
12.
J Biol Chem ; 300(5): 107224, 2024 May.
Article in English | MEDLINE | ID: mdl-38537695

ABSTRACT

Impaired cholesterol efflux and/or uptake can influence arterial lipid accumulation leading to atherosclerosis. Here, we report that tripartite motif-containing protein 13 (TRIM13), a RING-type E3 ubiquitin ligase, plays a role in arterial lipid accumulation leading to atherosclerosis. Using molecular approaches and KO mouse model, we found that TRIM13 expression was induced both in the aorta and peritoneal macrophages (pMφ) of ApoE-/- mice in response to Western diet (WD) in vivo. Furthermore, proatherogenic cytokine interleukin-1ß also induced TRIM13 expression both in pMφ and vascular smooth muscle cells. Furthermore, we found that TRIM13 via ubiquitination and degradation of liver X receptor (LXR)α/ß downregulates the expression of their target genes ABCA1/G1 and thereby inhibits cholesterol efflux. In addition, TRIM13 by ubiquitinating and degrading suppressor of cytokine signaling 1/3 (SOCS1/3) mediates signal transducer and activator of transcription 1 (STAT1) activation, CD36 expression, and foam cell formation. In line with these observations, genetic deletion of TRIM13 by rescuing cholesterol efflux and inhibiting foam cell formation protects against diet-induced atherosclerosis. We also found that while TRIM13 and CD36 levels were increased, LXRα/ß, ABCA1/G1, and SOCS3 levels were decreased both in Mφ and smooth muscle cells of stenotic human coronary arteries as compared to nonstenotic arteries. More intriguingly, the expression levels of TRIM13 and its downstream signaling molecules were correlated with the severity of stenotic lesions. Together, these observations reveal for the first time that TRIM13 plays a crucial role in diet-induced atherosclerosis, and that it could be a potential drug target against this vascular lesion.


Subject(s)
Atherosclerosis , Cholesterol , Foam Cells , Lipoproteins, LDL , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Humans , Male , Mice , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Cholesterol/metabolism , Diet, Western/adverse effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Foam Cells/metabolism , Foam Cells/pathology , Lipoproteins, LDL/metabolism , Liver X Receptors/metabolism , Liver X Receptors/genetics , Mice, Knockout, ApoE , RAW 264.7 Cells , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
13.
Nature ; 567(7747): 187-193, 2019 03.
Article in English | MEDLINE | ID: mdl-30814737

ABSTRACT

Dysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and network structure of mammalian lipid metabolism. These include the identification of plasma lipid signatures that predict pathological lipid abundance in the liver of mice and humans, defining subcellular localization and functionality of lipid-related proteins, and revealing functional protein and genetic variants that are predicted to modulate lipid abundance. Trans-omic analyses using these datasets facilitated the identification and validation of PSMD9 as a previously unknown lipid regulatory protein. Collectively, our study serves as a rich resource for probing mammalian lipid metabolism and provides opportunities for the discovery of therapeutic agents and biomarkers in the setting of hepatic lipotoxicity.


Subject(s)
Lipid Metabolism/genetics , Lipids/analysis , Lipids/genetics , Proteomics , Animals , HEK293 Cells , Humans , Lipid Metabolism/physiology , Lipids/blood , Lipids/classification , Liver/chemistry , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Obesity/genetics , Obesity/metabolism , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism
14.
Am J Hum Genet ; 108(3): 411-430, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33626337

ABSTRACT

Genetic factors underlying coronary artery disease (CAD) have been widely studied using genome-wide association studies (GWASs). However, the functional understanding of the CAD loci has been limited by the fact that a majority of GWAS variants are located within non-coding regions with no functional role. High cholesterol and dysregulation of the liver metabolism such as non-alcoholic fatty liver disease confer an increased risk of CAD. Here, we studied the function of non-coding single-nucleotide polymorphisms in CAD GWAS loci located within liver-specific enhancer elements by identifying their potential target genes using liver cis-eQTL analysis and promoter Capture Hi-C in HepG2 cells. Altogether, 734 target genes were identified of which 121 exhibited correlations to liver-related traits. To identify potentially causal regulatory SNPs, the allele-specific enhancer activity was analyzed by (1) sequence-based computational predictions, (2) quantification of allele-specific transcription factor binding, and (3) STARR-seq massively parallel reporter assay. Altogether, our analysis identified 1,277 unique SNPs that display allele-specific regulatory activity. Among these, susceptibility enhancers near important cholesterol homeostasis genes (APOB, APOC1, APOE, and LIPA) were identified, suggesting that altered gene regulatory activity could represent another way by which genetic variation regulates serum lipoprotein levels. Using CRISPR-based perturbation, we demonstrate how the deletion/activation of a single enhancer leads to changes in the expression of many target genes located in a shared chromatin interaction domain. Our integrative genomics approach represents a comprehensive effort in identifying putative causal regulatory regions and target genes that could predispose to clinical manifestation of CAD by affecting liver function.


Subject(s)
Coronary Artery Disease/genetics , Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease , Quantitative Trait Loci/genetics , Alleles , Chromatin/genetics , Coronary Artery Disease/pathology , Female , Genome-Wide Association Study/methods , Genomics , Humans , Liver/metabolism , Male , Molecular Sequence Annotation , Organ Specificity/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Risk Factors
15.
J Lipid Res ; 64(4): 100349, 2023 04.
Article in English | MEDLINE | ID: mdl-36806709

ABSTRACT

We previously demonstrated that antisense oligonucleotide-mediated knockdown of Mboat7, the gene encoding membrane bound O-acyltransferase 7, in the liver and adipose tissue of mice promoted high fat diet-induced hepatic steatosis, hyperinsulinemia, and systemic insulin resistance. Thereafter, other groups showed that hepatocyte-specific genetic deletion of Mboat7 promoted striking fatty liver and NAFLD progression in mice but does not alter insulin sensitivity, suggesting the potential for cell autonomous roles. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. We generated Mboat7 floxed mice and created hepatocyte- and adipocyte-specific Mboat7 knockout mice using Cre-recombinase mice under the control of the albumin and adiponectin promoter, respectively. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. The expression of Mboat7 in white adipose tissue closely correlates with diet-induced obesity across a panel of ∼100 inbred strains of mice fed a high fat/high sucrose diet. Moreover, we found that adipocyte-specific genetic deletion of Mboat7 is sufficient to promote hyperinsulinemia, systemic insulin resistance, and mild fatty liver. Unlike in the liver, where Mboat7 plays a relatively minor role in maintaining arachidonic acid-containing PI pools, Mboat7 is the major source of arachidonic acid-containing PI pools in adipose tissue. Our data demonstrate that MBOAT7 is a critical regulator of adipose tissue PI homeostasis, and adipocyte MBOAT7-driven PI biosynthesis is closely linked to hyperinsulinemia and insulin resistance in mice.


Subject(s)
Hyperinsulinism , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Mice , Acylation , Adipocytes/metabolism , Arachidonic Acid/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Homeostasis , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Insulin Resistance/genetics , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism
16.
Curr Atheroscler Rep ; 25(12): 1013-1023, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38008808

ABSTRACT

PURPOSE OF REVIEW: Coronary artery disease is a complex disorder and the leading cause of mortality worldwide. As technologies for the generation of high-throughput multiomics data have advanced, gene regulatory network modeling has become an increasingly powerful tool in understanding coronary artery disease. This review summarizes recent and novel gene regulatory network tools for bulk tissue and single cell data, existing databases for network construction, and applications of gene regulatory networks in coronary artery disease. RECENT FINDINGS: New gene regulatory network tools can integrate multiomics data to elucidate complex disease mechanisms at unprecedented cellular and spatial resolutions. At the same time, updates to coronary artery disease expression data in existing databases have enabled researchers to build gene regulatory networks to study novel disease mechanisms. Gene regulatory networks have proven extremely useful in understanding CAD heritability beyond what is explained by GWAS loci and in identifying mechanisms and key driver genes underlying disease onset and progression. Gene regulatory networks can holistically and comprehensively address the complex nature of coronary artery disease. In this review, we discuss key algorithmic approaches to construct gene regulatory networks and highlight state-of-the-art methods that model specific modes of gene regulation. We also explore recent applications of these tools in coronary artery disease patient data repositories to understand disease heritability and shared and distinct disease mechanisms and key driver genes across tissues, between sexes, and between species.


Subject(s)
Coronary Artery Disease , Gene Regulatory Networks , Humans , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Gene Expression Regulation
17.
PLoS Genet ; 16(10): e1009165, 2020 10.
Article in English | MEDLINE | ID: mdl-33104702

ABSTRACT

BACKGROUND: The majority of quantitative genetic models used to map complex traits assume that alleles have similar effects across all individuals. Significant evidence suggests, however, that epistatic interactions modulate the impact of many alleles. Nevertheless, identifying epistatic interactions remains computationally and statistically challenging. In this work, we address some of these challenges by developing a statistical test for polygenic epistasis that determines whether the effect of an allele is altered by the global genetic ancestry proportion from distinct progenitors. RESULTS: We applied our method to data from mice and yeast. For the mice, we observed 49 significant genotype-by-ancestry interaction associations across 14 phenotypes as well as over 1,400 Bonferroni-corrected genotype-by-ancestry interaction associations for mouse gene expression data. For the yeast, we observed 92 significant genotype-by-ancestry interactions across 38 phenotypes. Given this evidence of epistasis, we test for and observe evidence of rapid selection pressure on ancestry specific polymorphisms within one of the cohorts, consistent with epistatic selection. CONCLUSIONS: Unlike our prior work in human populations, we observe widespread evidence of ancestry-modified SNP effects, perhaps reflecting the greater divergence present in crosses using mice and yeast.


Subject(s)
Epistasis, Genetic , Evolution, Molecular , Multifactorial Inheritance/genetics , Selection, Genetic/genetics , Alleles , Animals , Genotype , Humans , Mice , Models, Genetic , Phenotype , Quantitative Trait Loci/genetics , Saccharomyces cerevisiae/genetics
18.
Circulation ; 143(18): 1809-1823, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33626882

ABSTRACT

BACKGROUND: Coronary artery disease (CAD) is a multifactorial condition with both genetic and exogenous causes. The contribution of tissue-specific functional networks to the development of atherosclerosis remains largely unclear. The aim of this study was to identify and characterize central regulators and networks leading to atherosclerosis. METHODS: Based on several hundred genes known to affect atherosclerosis risk in mouse (as demonstrated in knockout models) and human (as shown by genome-wide association studies), liver gene regulatory networks were modeled. The hierarchical order and regulatory directions of genes within the network were based on Bayesian prediction models, as well as experimental studies including chromatin immunoprecipitation DNA-sequencing, chromatin immunoprecipitation mass spectrometry, overexpression, small interfering RNA knockdown in mouse and human liver cells, and knockout mouse experiments. Bioinformatics and correlation analyses were used to clarify associations between central genes and CAD phenotypes in both human and mouse. RESULTS: The transcription factor MAFF (MAF basic leucine zipper transcription factor F) interacted as a key driver of a liver network with 3 human genes at CAD genome-wide association studies loci and 11 atherosclerotic murine genes. Most importantly, expression levels of the low-density lipoprotein receptor (LDLR) gene correlated with MAFF in 600 CAD patients undergoing bypass surgery (STARNET [Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task]) and a hybrid mouse diversity panel involving 105 different inbred mouse strains. Molecular mechanisms of MAFF were tested in noninflammatory conditions and showed positive correlation between MAFF and LDLR in vitro and in vivo. Interestingly, after lipopolysaccharide stimulation (inflammatory conditions), an inverse correlation between MAFF and LDLR in vitro and in vivo was observed. Chromatin immunoprecipitation mass spectrometry revealed that the human CAD genome-wide association studies candidate BACH1 (BTB domain and CNC homolog 1) assists MAFF in the presence of lipopolysaccharide stimulation with respective heterodimers binding at the MAF recognition element of the LDLR promoter to transcriptionally downregulate LDLR expression. CONCLUSIONS: The transcription factor MAFF was identified as a novel central regulator of an atherosclerosis/CAD-relevant liver network. MAFF triggered context-specific expression of LDLR and other genes known to affect CAD risk. Our results suggest that MAFF is a missing link between inflammation, lipid and lipoprotein metabolism, and a possible treatment target.


Subject(s)
Atherosclerosis/metabolism , Cholesterol/metabolism , DNA-Binding Proteins/metabolism , Inflammation/metabolism , MafF Transcription Factor/metabolism , Nuclear Proteins/metabolism , Animals , Disease Models, Animal , Humans , Male , Mice , Mice, Knockout
19.
Circulation ; 143(2): 163-177, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33222501

ABSTRACT

BACKGROUND: Chronic activation of the innate immune system drives inflammation and contributes directly to atherosclerosis. We previously showed that macrophages in the atherogenic plaque undergo RIPK3 (receptor-interacting serine/threonine-protein kinase 3)-MLKL (mixed lineage kinase domain-like protein)-dependent programmed necroptosis in response to sterile ligands such as oxidized low-density lipoprotein and damage-associated molecular patterns and that necroptosis is active in advanced atherosclerotic plaques. Upstream of the RIPK3-MLKL necroptotic machinery lies RIPK1 (receptor-interacting serine/threonine-protein kinase 1), which acts as a master switch that controls whether the cell undergoes NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells)-dependent inflammation, caspase-dependent apoptosis, or necroptosis in response to extracellular stimuli. We therefore set out to investigate the role of RIPK1 in the development of atherosclerosis, which is driven largely by NF-κB-dependent inflammation at early stages. We hypothesize that, unlike RIPK3 and MLKL, RIPK1 primarily drives NF-κB-dependent inflammation in early atherogenic lesions, and knocking down RIPK1 will reduce inflammatory cell activation and protect against the progression of atherosclerosis. METHODS: We examined expression of RIPK1 protein and mRNA in both human and mouse atherosclerotic lesions, and used loss-of-function approaches in vitro in macrophages and endothelial cells to measure inflammatory responses. We administered weekly injections of RIPK1 antisense oligonucleotides to Apoe-/- mice fed a cholesterol-rich (Western) diet for 8 weeks. RESULTS: We find that RIPK1 expression is abundant in early-stage atherosclerotic lesions in both humans and mice. Treatment with RIPK1 antisense oligonucleotides led to a reduction in aortic sinus and en face lesion areas (47.2% or 58.8% decrease relative to control, P<0.01) and plasma inflammatory cytokines (IL-1α [interleukin 1α], IL-17A [interleukin 17A], P<0.05) in comparison with controls. RIPK1 knockdown in macrophages decreased inflammatory genes (NF-κB, TNFα [tumor necrosis factor α], IL-1α) and in vivo lipopolysaccharide- and atherogenic diet-induced NF-κB activation. In endothelial cells, knockdown of RIPK1 prevented NF-κB translocation to the nucleus in response to TNFα, where accordingly there was a reduction in gene expression of IL1B, E-selectin, and monocyte attachment. CONCLUSIONS: We identify RIPK1 as a central driver of inflammation in atherosclerosis by its ability to activate the NF-κB pathway and promote inflammatory cytokine release. Given the high levels of RIPK1 expression in human atherosclerotic lesions, our study suggests RIPK1 as a future therapeutic target to reduce residual inflammation in patients at high risk of coronary artery disease.


Subject(s)
Atherosclerosis/metabolism , Gene Silencing/physiology , Inflammation Mediators/metabolism , NF-kappa B/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/biosynthesis , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Cells, Cultured , Cholesterol, Dietary/administration & dosage , Cholesterol, Dietary/adverse effects , Female , Gene Expression , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
20.
Am J Hum Genet ; 105(4): 773-787, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31564431

ABSTRACT

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic traits including type 2 diabetes (T2D), lipid levels, body fat distribution, and adiposity, although most causal genes remain unknown. We used subcutaneous adipose tissue RNA-seq data from 434 Finnish men from the METSIM study to identify 9,687 primary and 2,785 secondary cis-expression quantitative trait loci (eQTL; <1 Mb from TSS, FDR < 1%). Compared to primary eQTL signals, secondary eQTL signals were located further from transcription start sites, had smaller effect sizes, and were less enriched in adipose tissue regulatory elements compared to primary signals. Among 2,843 cardiometabolic GWAS signals, 262 colocalized by LD and conditional analysis with 318 transcripts as primary and conditionally distinct secondary cis-eQTLs, including some across ancestries. Of cardiometabolic traits examined for adipose tissue eQTL colocalizations, waist-hip ratio (WHR) and circulating lipid traits had the highest percentage of colocalized eQTLs (15% and 14%, respectively). Among alleles associated with increased cardiometabolic GWAS risk, approximately half (53%) were associated with decreased gene expression level. Mediation analyses of colocalized genes and cardiometabolic traits within the 434 individuals provided further evidence that gene expression influences variant-trait associations. These results identify hundreds of candidate genes that may act in adipose tissue to influence cardiometabolic traits.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/genetics , Gene Expression , Obesity/genetics , Alleles , Body Mass Index , Finland , Genome-Wide Association Study , Humans , Male , Quantitative Trait Loci , Waist-Hip Ratio
SELECTION OF CITATIONS
SEARCH DETAIL