Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Sensors (Basel) ; 23(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36991908

ABSTRACT

In this paper, an optical fiber Fabry-Pérot (FP) microfluidic sensor based on the capillary fiber (CF) and side illumination method is designed. The hybrid FP cavity (HFP) is naturally formed by the inner air hole and silica wall of CF which is side illuminated by another single mode fiber (SMF). The CF acts as a naturally microfluidic channel, which can be served as a potential microfluidic solution concentration sensor. Moreover, the FP cavity formed by silica wall is insensitive to ambient solution refractive index but sensitive to the temperature. Thus, the HFP sensor can simultaneously measure microfluidic refractive index (RI) and temperature by cross-sensitivity matrix method. Three sensors with different inner air hole diameters were selected to fabricate and characterize the sensing performance. The interference spectra corresponding to each cavity length can be separated from each amplitude peak in the FFT spectra with a proper bandpass filter. Experimental results indicate that the proposed sensor with excellent sensing performance of temperature compensation is low-cost and easy to build, which is suitable for in situ monitoring and high-precision sensing of drug concentration and the optical constants of micro-specimens in the biomedical and biochemical fields.

2.
Opt Express ; 30(2): 2326-2337, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209375

ABSTRACT

In this paper, a wideband photomultiplier tube (PMT)-based underwater wireless optical communication (UWOC) system is proposed and a comprehensive experimental study of the proposed PMT-based UWOC system is conducted, in which the transmission distance, data rate, and attenuation length (AL) is pushed to 100.6 meters, 3 Gbps, and 6.62, respectively. The receiver sensitivity at 100.6-meter underwater transmission is as low as -40 dBm for the 1.5-Gbps on-off keying (OOK) modulation signal. To the best of our knowledge, this is the first Gbps-class UWOC experimental demonstration in >100-meter transmission that has ever been reported. To further minimize the complexity of channel equalization, a sparsity-aware equalizer with orthogonal matching pursuit is adopted to reduce the number of the filter coefficients by more than 50% while keeping slight performance penalty. Furthermore, the performance of the proposed PMT-based UWOC system in different turbidity waters is investigated, which shows the robustness of the proposed scheme. Thanks to the great sensitivity (approaching the quantum limit) and a relatively larger effective area, benefits of misalignment tolerance contributed by the PMT is verified through a proof-of-concept UWOC experiment.

SELECTION OF CITATIONS
SEARCH DETAIL