Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 66(5): 684-697.e9, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28552616

ABSTRACT

Overcoming metabolic stress is a critical step in tumor growth. Acetyl coenzyme A (acetyl-CoA) generated from glucose and acetate uptake is important for histone acetylation and gene expression. However, how acetyl-CoA is produced under nutritional stress is unclear. We demonstrate here that glucose deprivation results in AMP-activated protein kinase (AMPK)-mediated acetyl-CoA synthetase 2 (ACSS2) phosphorylation at S659, which exposed the nuclear localization signal of ACSS2 for importin α5 binding and nuclear translocation. In the nucleus, ACSS2 binds to transcription factor EB and translocates to lysosomal and autophagy gene promoter regions, where ACSS2 incorporates acetate generated from histone acetylation turnover to locally produce acetyl-CoA for histone H3 acetylation in these regions and promote lysosomal biogenesis, autophagy, cell survival, and brain tumorigenesis. In addition, ACSS2 S659 phosphorylation positively correlates with AMPK activity in glioma specimens and grades of glioma malignancy. These results underscore the significance of nuclear ACSS2-mediated histone acetylation in maintaining cell homeostasis and tumor development.


Subject(s)
Acetate-CoA Ligase/metabolism , Autophagy , Brain Neoplasms/enzymology , Cell Nucleus/enzymology , Glioblastoma/enzymology , Histones/metabolism , Lysosomes/metabolism , Organelle Biogenesis , Transcription, Genetic , AMP-Activated Protein Kinases/metabolism , Acetate-CoA Ligase/genetics , Acetyl Coenzyme A/metabolism , Acetylation , Active Transport, Cell Nucleus , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Binding Sites , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/pathology , Cell Survival , Energy Metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Protein Processing, Post-Translational , RNA Interference , Stress, Physiological , Transfection , alpha Karyopherins/genetics , alpha Karyopherins/metabolism
2.
J Hum Genet ; 69(8): 381-389, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38730005

ABSTRACT

Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. However, the genetic spectrum of this disease is not yet complete. In this study, we identified a novel variant m.4344T>C in mitochondrial tRNAGln from a patient with developmental delay. The mutant loads of m.4344T>C were 95% and 89% in the patient's blood and oral epithelial cells, respectively. Multialignment analysis showed high evolutionary conservation of this nucleotide. TrRosettaRNA predicted that m.4344T>C variant would introduce an additional hydrogen bond and alter the conformation of the T-loop. The transmitochondrial cybrid-based study demonstrated that m.4344T>C variant impaired the steady-state level of mitochondrial tRNAGln and decreased the contents of mitochondrial OXPHOS complexes I, III, and IV, resulting in defective mitochondrial respiration, elevated mitochondrial ROS production, reduced mitochondrial membrane potential and decreased mitochondrial ATP levels. Altogether, this is the first report in patient carrying the m.4344T>C variant. Our data uncover the pathogenesis of the m.4344T>C variant and expand the genetic mutation spectrum of mitochondrial diseases, thus contributing to the clinical diagnosis of mitochondrial tRNAGln gene variants-associated mitochondrial diseases.


Subject(s)
DNA, Mitochondrial , Developmental Disabilities , Mitochondrial Diseases , Humans , Developmental Disabilities/genetics , Developmental Disabilities/pathology , DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mutation , Mitochondria/genetics , Mitochondria/metabolism , Male , Female , Membrane Potential, Mitochondrial/genetics , Oxidative Phosphorylation , Child, Preschool , Reactive Oxygen Species/metabolism
3.
J Hum Genet ; 68(4): 239-246, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36482121

ABSTRACT

Leigh syndrome (LS)/Leigh-like syndrome (LLS) is one of the most common mitochondrial disease subtypes, caused by mutations in either the nuclear or mitochondrial genomes. Here, we identified a novel intronic mutation (c.82-2 A > G) and a novel exonic insertion mutation (c.290dupT) in TMEM126B from a Chinese patient with clinical manifestations of LLS. In silico predictions, minigene splicing assays and patients' RNA analyses determined that the c.82-2 A > G mutation resulted in complete exon 2 skipping, and the c.290dupT mutation provoked partial and complete exon 3 skipping, leading to translational frameshifts and premature termination. Functional analysis revealed the impaired mitochondrial function in patient-derived lymphocytes due to severe complex I content and assembly defect. Altogether, this is the first report of LLS in a patient carrying mutations in TMEM126B. Our data uncovers the functional effect and the molecular mechanism of the pathogenic variants c.82-2 A > G and c.290dupT, which expands the gene mutation spectrum of LLS and clinical spectrum caused by TMEM126B mutations, and thus help to clinical diagnosis of TMEM126B mutation-related mitochondrial diseases.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Humans , Leigh Disease/genetics , RNA Splicing , Mitochondrial Diseases/genetics , Mutation , Membrane Proteins/genetics
4.
J Med Virol ; 95(7): e28953, 2023 07.
Article in English | MEDLINE | ID: mdl-37461287

ABSTRACT

As the understanding of the mechanisms of SARS-CoV-2 infection continues to grow, researchers have come to realize that ACE2 and TMPRSS2 receptors are not the only way for the virus to invade the host, and that there are many molecules that may serve as potential receptors or cofactors. The functionality of these numerous receptors, proposed by different research groups, demands a fast, simple, and accurate validation method. To address this issue, we here established a DnaE intein-based cell-cell fusion system, a key result of our study, which enables rapid simulation of SARS-CoV-2 host cell infection. This system allowed us to validate that proteins such as AXL function as SARS-CoV-2 spike protein receptors and synergize with ACE2 for cell invasion, and that proteins like NRP1 act as cofactors, facilitating ACE2-mediated syncytium formation. Our results also suggest that mutations in the NTD of the SARS-CoV-2 Delta variant spike protein show a preferential selection for Spike-AXL interaction over Spike-LDLRAD3. In summary, our system serves as a crucial tool for the rapid and comprehensive verification of potential receptors, screening of SARS-CoV-2-neutralizing antibodies, or targeted drugs, bearing substantial implications for translational clinical applications.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral , Cell Fusion , Inteins , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus
5.
Nature ; 552(7684): 273-277, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29211711

ABSTRACT

Histone modifications, such as the frequently occurring lysine succinylation, are central to the regulation of chromatin-based processes. However, the mechanism and functional consequences of histone succinylation are unknown. Here we show that the α-ketoglutarate dehydrogenase (α-KGDH) complex is localized in the nucleus in human cell lines and binds to lysine acetyltransferase 2A (KAT2A, also known as GCN5) in the promoter regions of genes. We show that succinyl-coenzyme A (succinyl-CoA) binds to KAT2A. The crystal structure of the catalytic domain of KAT2A in complex with succinyl-CoA at 2.3 Å resolution shows that succinyl-CoA binds to a deep cleft of KAT2A with the succinyl moiety pointing towards the end of a flexible loop 3, which adopts different structural conformations in succinyl-CoA-bound and acetyl-CoA-bound forms. Site-directed mutagenesis indicates that tyrosine 645 in this loop has an important role in the selective binding of succinyl-CoA over acetyl-CoA. KAT2A acts as a succinyltransferase and succinylates histone H3 on lysine 79, with a maximum frequency around the transcription start sites of genes. Preventing the α-KGDH complex from entering the nucleus, or expression of KAT2A(Tyr645Ala), reduces gene expression and inhibits tumour cell proliferation and tumour growth. These findings reveal an important mechanism of histone modification and demonstrate that local generation of succinyl-CoA by the nuclear α-KGDH complex coupled with the succinyltransferase activity of KAT2A is instrumental in histone succinylation, tumour cell proliferation, and tumour development.


Subject(s)
Histone Acetyltransferases/metabolism , Histones/metabolism , Ketoglutarate Dehydrogenase Complex/metabolism , Acetyl Coenzyme A/metabolism , Acyl Coenzyme A/metabolism , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation , Crystallography, X-Ray , Female , Gene Expression Regulation , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Histones/chemistry , Humans , Lysine/metabolism , Mice , Models, Molecular , Mutagenesis, Site-Directed , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Protein Domains , Transcription Initiation Site , Tyrosine/genetics , Tyrosine/metabolism
6.
Small ; 18(44): e2203114, 2022 11.
Article in English | MEDLINE | ID: mdl-36148846

ABSTRACT

Although enormous success has been obtained for dendritic cells (DCs)-mediated antigen-specific T cells anticancer immunotherapy in the clinic, it still faces major challenging problems: insufficient DCs in tumor tissue and low response rate for tumor cells lacking antigen expression, especially in low immunogenic tumors such as pancreatic cancer. Here, these challenges are tackled through tumor microenvironment responsive nanogels with prominent tumor-targeting capability by Panc02 cell membranes coating and inhibition of tumor-derived prostaglandin E2 (PGE2), aimed at improving natural killer (NK) cells activation and inducing activated NK cells-dependent DCs recruitment. The engineered nanogels can on-demand release acetaminophen to inhibit PGE2 secretion, thus promoting the activity of NK cells for non-antigen-specific tumor elimination. Furthermore, activated NK cells can secrete chemokines as CC motif chemokine ligand 5 and X-C motif chemokine ligand 1 to recruit immature DCs, and then promote DCs maturation and induce antigen-dependent CD8+ T cells proliferation for enhancing antigen-specific immunotherapy. Notably, these responsive nanogels show excellent therapeutic effect on Panc02 pancreatic tumor growth and postsurgical recurrence, especially combination of the programmed cell death-ligand 1 checkpoint-blockade immunotherapy. Therefore, this study provides a simple strategy for enhancing low immunogenic tumors immunotherapy through an antigen-independent way and antigen-dependent way synergetically.


Subject(s)
CD8-Positive T-Lymphocytes , Pancreatic Neoplasms , Humans , Nanogels , Dendritic Cells/metabolism , Dinoprostone/metabolism , Dinoprostone/pharmacology , Ligands , Killer Cells, Natural , Immunotherapy , Chemokines/metabolism , Pancreatic Neoplasms/therapy , Tumor Microenvironment
7.
Mol Biol Rep ; 49(8): 7275-7286, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35562515

ABSTRACT

BACKGROUND: Discoidin domain receptor 1 (DDR1), a member of receptor tyrosine kinase, has been implicated in tumor progression. However, the function and underlying mechanism of DDR1 in lung adenocarcinoma (LUAD) progression is unclear. Thus, we explored the molecular regulatory mechanism of DDR1 in the migration of LUAD. METHODS: Transwell assays, wound healing assays and xenograft tumor assays were performed to study the function of DDR1 in the progression of LUAD. Immunoblotting and quantitative real-time polymerase chain reaction (RT-qPCR) were used to detect the expression levels of genes. Co-immunoprecipitation (co-IP) assays were performed to detect the interaction between DDR1 and AKT. Immunofluorescence and immunohistochemistry assays were used to determine the expression level of proteins in cells and tissues, respectively. RESULTS: DDR1 expression was significantly higher in LUAD tissues than in normal lung tissues, and the level of DDR1 was inversely correlated with prognosis in patients. We found that DDR1 promoted the migration and invasion of LUAD cells in vitro. Furthermore, ectopic expression of DDR1 in LUAD cells altered EMT-related markers expression. Importantly, the DDR1 protein interacted with AKT and phosphorylated AKT. The AKT inhibitor MK2206 interrupted Snail upregulation in DDR1-overexpressing LUAD cells. Finally, our study revealed that depletion of DDR1 attenuated LUAD cell migration in a tumor xenograft mouse model. CONCLUSION: Our findings uncovered that a high abundance of DDR1 increased the migration and invasion capability of LUAD cells via the AKT/Snail signaling axis and indicated that DDR1 could be a potential target for treating LUAD.


Subject(s)
Adenocarcinoma of Lung , Discoidin Domain Receptor 1 , Lung Neoplasms , Proto-Oncogene Proteins c-akt , Snail Family Transcription Factors , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Discoidin Domain Receptor 1/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Proto-Oncogene Proteins c-akt/genetics , Snail Family Transcription Factors/genetics
8.
Appl Microbiol Biotechnol ; 106(19-20): 6671-6687, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36083304

ABSTRACT

With the development of 16S rRNA technology, gut microbiome evaluation has been performed in many diseases, including gastrointestinal tumors. Among these cancers, gastric cancer (GC) exhibits high morbidity and mortality and has been extensively studied in its pathogenesis and diagnosis techniques. The current researches have proved that the gut microbiome may have the potential to distinguish GC patients from healthy patients. However, the change of the gut microbiome according to tumor node metastasis classification (TNM) has not been clarified. Besides, the characteristics of gut microbiome in GC patients and their ages of onset are also ambiguous. To address the above shortcomings, we investigated 226 fecal samples and divided them according to their tumor stage and onset age. The findings revealed that surgery and tumor stage can change the characteristic of GC patients' gut microbiota. In specific, the effect of surgery on early gastric cancer (EGC) was greater than that on advanced gastric cancer (AGC), and the comparison of postoperative microflora with healthy people indicated that EGC has more differential bacteria than AGC. Besides, we found that Collinsella, Blautia, Anaerostipes, Dorea, and Lachnospiraceae_ND3007_group expressed differently between EGC and AGC. More importantly, it is the first time revealed that the composition of gut microbiota in GC is different between different onset ages. KEY POINTS: •Gut microbiota of gastric cancer (GC) patients are either highly associated with TNM stage and surgery or not. It shows surgery has more significant changes in early gastric cancer (EGC) than advanced gastric cancer (AGC). •There existed specific gut microbiota between EGC and AGC which may have potential to distinguish the early or advanced GC. •Onset age of GC may influence the gut microbiota: the composition of gut microbiota of early-onset gastric cancer (EOGC) and late-onset gastric cancer (LOGC) is significantly different.


Subject(s)
Gastrointestinal Microbiome , Stomach Neoplasms , Bacteria/genetics , Feces , Humans , RNA, Ribosomal, 16S/genetics , Stomach Neoplasms/genetics
9.
Neoplasma ; 69(5): 1154-1164, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35818965

ABSTRACT

Breast cancer is the most commonly diagnosed cancer among women, causing 15% of patient deaths. The metastasis of breast cancer cells is the leading cause of death for patients. Several studies have shown that Discoidin Domain Receptor 1 (DDR1) was highly expressed in breast cancer and could influence tumor cell behaviors. However, the specific role of DDR1 in breast cancer metastasis is still elusive. In this study, we uncovered that DDR1 is significantly increased in breast cancer and inversely correlated with the prognosis of patients. Knockdown of DDR1 suppressed the migration and invasion of breast cancer cells. Additionally, overexpression of DDR1 enhanced the metastatic capacity of cancer cells. Immunoblotting revealed that activation of Src and FAK, which are involved in cancer cell metastasis, were correlated with the expression level of DDR1. Co-immunoprecipitation experiments showed that DDR1 could bind to Src and FAK. Finally, the inhibition of FAK and Src could attenuate DDR1 enhanced migration ability of breast cancer cells. In summary, our study revealed that DDR1 was highly expressed in breast cancer and negatively correlated with the prognosis of breast cancer patients. DDR1 facilitates migration and invasion in breast cancer cells via activation of the Src-FAK signaling. Accordingly, blocking DDR1/Src/FAK axis is a promising therapeutic strategy for breast cancer treatment.


Subject(s)
Breast Neoplasms , Discoidin Domain Receptor 1 , Female , Humans , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Discoidin Domain Receptor 1/genetics , Discoidin Domain Receptor 1/metabolism , Prognosis , Signal Transduction , Genes, src , Focal Adhesion Protein-Tyrosine Kinases/metabolism
10.
J Virol ; 94(17)2020 08 17.
Article in English | MEDLINE | ID: mdl-32522857

ABSTRACT

Rabbits are pivotal domestic animals for both the economy and as an animal model for human diseases. A large number of rabbits have been infected by rabbit hemorrhagic disease virus (RHDV) in natural and artificial pandemics in the past. Differences in presentation of antigenic peptides by polymorphic major histocompatibility complex (MHC) molecules to T-cell receptors (TCR) on T lymphocytes are associated with viral clearance in mammals. Here, we screened and identified a series of peptides derived from RHDV binding to the rabbit MHC class I molecule, RLA-A1. The small, hydrophobic B and F pockets of RLA-A1 capture a peptide motif analogous to that recognized by human class I molecule HLA-A*0201, with more restricted aliphatic anchors at P2 and PΩ positions. Moreover, the rabbit molecule is characterized by an uncommon residue combination of Gly53, Val55, and Glu56, making the 310 helix and the loop between the 310 and α1 helices closer to the α2 helix. A wider A pocket in RLA-A1 can induce a special conformation of the P1 anchor and may play a pivotal role in peptide assembly and TCR recognition. Our study broadens the knowledge of T-cell immunity in domestic animals and also provides useful insights for vaccine development to prevent infectious diseases in rabbits.IMPORTANCE We screened rabbit MHC class I RLA-A1-restricted peptides from the capsid protein VP60 of rabbit hemorrhagic disease virus (RHDV) and determined the structures of RLA-A1 complexed with three peptides, VP60-1, VP60-2, and VP60-10. From the structures, we found that the peptide binding motifs of RLA-A1 are extremely constraining. Thus, there is a generally restricted peptide selection for RLA-A1 compared to that for human HLA-A*0201. In addition, uncommon residues Gly53, Val55, and Glu56 of RLA-A1 are located between the 310 helix and α1 helix, which makes the steric position of the 310 helix in RLA-A1 much closer to the α2 helix than that found in other mammalian MHC class I molecules. This special conformation between the 310 helix and α1 helix plays a pivotal role in rabbit MHC class I assembly. Our results provide new insights into MHC class I molecule assembly and peptide presentation of domestic mammals. Furthermore, these data also broaden our knowledge on T-cell immunity in rabbits and may also provide useful information for vaccine development to prevent infectious diseases in rabbits.


Subject(s)
Hemorrhagic Disease Virus, Rabbit/immunology , Hemorrhagic Disease Virus, Rabbit/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/immunology , Peptides/chemistry , Peptides/immunology , Animals , HLA Antigens/immunology , Histocompatibility Antigens/immunology , Histocompatibility Antigens Class I/genetics , Models, Molecular , Peptides/genetics , Protein Binding/immunology , Protein Conformation , Rabbits , Receptors, Antigen, T-Cell/metabolism , Sequence Alignment , T-Lymphocytes/immunology
11.
Appl Environ Microbiol ; 87(10)2021 04 27.
Article in English | MEDLINE | ID: mdl-33712431

ABSTRACT

Escherichia coli [2Fe-2S]-ferredoxin and other ISC proteins encoded by the iscRSUA-hscBA-fdx-iscX (isc) operon are responsible for the assembly of iron-sulfur clusters. It is proposed that ferredoxin (Fdx) donates electrons from its reduced [2Fe-2S] center to iron-sulfur cluster biogenesis reactions. However, the underlying mechanisms of the [2Fe-2S] cluster assembly in Fdx remain elusive. Here, we report that Fdx preferentially binds iron, but not the [2Fe-2S] cluster, under cold stress conditions (≤16°C). The iron binding in Fdx is characterized by a unique absorption peak at 320 nm based on UV-visible spectroscopy. In addition, the iron-binding form of Fdx could be converted to the [2Fe-2S] cluster-bound form after transferring cold-stressed cells to normal cultivation temperatures above 25°C. In vitro experiments also revealed that Fdx could utilize bound iron to assemble the [2Fe-2S] cluster by itself. Furthermore, inactivation of the genes encoding IscS, IscU, and IscA did not limit [2Fe-2S] cluster assembly in Fdx, which was also observed by inactivating the isc or suf operon, indicating that iron-sulfur cluster biogenesis in Fdx arose from a unique pathway in E. coli Our results suggest that the intracellular assembly of [2Fe-2S] clusters in Fdx is susceptible to environmental temperatures. The iron binding form of Fdx (Fe-Fdx) is a precursor during its maturation to a cluster binding form ([2Fe-2S]-Fdx), and reassembly of the [2Fe-2S] clusters during temperature increases is not strictly reliant on other specific iron donors and scaffold proteins within the Isc or Suf system.IMPORTANCE Fdx is an electron carrier that is required for the maturation of many other iron-sulfur proteins. Its function strictly depends on its [2Fe-2S] center that bonds with the cysteinyl S atoms of four cysteine residues within Fdx. However, the assembly mechanism of the [2Fe-2S] clusters in Fdx remains controversial. This study reports that Fdx fails to form its [2Fe-2S] cluster under cold stress conditions but instead binds a single Fe atom at the cluster binding site. Moreover, when temperatures increase, Fdx can assemble clusters by itself from its iron-only binding form in E. coli cells. The possibility remains that Fdx can effectively accept clusters from multiple sources. Nevertheless, our results suggest that Fdx has a strong iron binding activity that contributes to the assembly of its own [2Fe-2S] cluster and that Fdx acts as a temperature sensor to regulate Isc system-mediated iron-sulfur cluster biogenesis.


Subject(s)
Escherichia coli/metabolism , Ferredoxins/metabolism , Iron/metabolism , Cold Temperature , Escherichia coli/genetics , Ferredoxins/genetics , Stress, Physiological , Sulfur/metabolism
12.
Cancer Cell Int ; 21(1): 463, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34488769

ABSTRACT

BACKGROUND: LYRM4 is necessary to maintain the stability and activity of the human cysteine desulfurase complex NFS1-LYRM4-ACP. The existing experimental results indicate that cancer cells rely on the high expression of NFS1. However, the role of LYRM4 in liver hepatocellular carcinoma (LIHC) remains unclear. METHODS: In this study, we combined bioinformatics analysis and clinical specimens to evaluate the mRNA, protein expression, and gene regulatory network of LYRM4 in LIHC. Furthermore, we detected the activity of several classical iron-sulphur proteins in LIHC cell lines through UV-vis spectrophotometry. RESULTS: The mRNA and protein levels of LYRM4 were upregulated in LIHC. Subsequent analysis revealed that the LYRM4 mRNA expression was related to various clinical stratifications, prognosis, and survival of LIHC patients. In addition, the mRNA expression of LYRM4 was significantly associated with ALT, tumour thrombus, and encapsulation of HBV-related LIHC patients. IHC results confirmed that LYRM4 was highly expressed in LIHC tissues and showed that the expression of LYRM4 protein in LIHC was significantly correlated with age and serum low-density lipoprotein (LDL) and triglyceride (TG) content. In particular, the mRNA expression of key iron- sulphur proteins POLD1 and PRIM2 was significantly overexpressed and correlated with poor prognosis in LIHC patients. Compared with hepatocytes, the activities of mitochondrial complex I and aconitate hydratase (ACO2) in LIHC cell lines were significantly increased. These results indicated that the iron-sulphur cluster (ISC) biosynthesis was significantly elevated in LIHC, leading to ISC-dependent metabolic reprogramming. Changes in the activity of ISC-dependent proteins may also occur in paracancerous tissues. Further analysis of the biological interaction and gene regulation networks of LYRM4 suggested that these genes were mainly involved in the citric acid cycle and oxidative phosphorylation. Finally, LYRM4 expression in LIHC was significantly positively correlated with the infiltrating levels of six immune cell types, and both factors were strongly associated with prognosis. CONCLUSION: LYRM4 could be a novel prognostic biomarker and molecular target for LIHC therapy. In particular, the potential regulatory networks of LYRM4 overexpression in LIHC provide a scientific basis for future research on the role of the ISC assembly mechanism and LYRM4-mediated sulphur transfer routes in carcinogenesis.

13.
BMC Cancer ; 21(1): 615, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34039309

ABSTRACT

BACKGROUND: Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remains a major public health problem and its pathogenesis remains unresolved. A recent proteomics study discovered a lipid enzyme Sterol O-acyltransferase (SOAT1) involvement in the progression of HCC. We aimed to explore the association between SOAT1 genetic variation and HCC. METHODS: We genotyped three exonic SOAT1 variants (rs10753191, V323V; rs3753526, L475L; rs13306731, Q526R) tagging most variations in the gene, in 221 HCC patients and 229 healthy individuals, to assess the impact of SOAT1 gene variation on risk of HCC occurrence. We further conducted immunohistochemistry to compare SOAT1 protein expression levels in 42 paired tumor and adjacent non-tumor tissues. RESULTS: We found that rs10753191 (Odds ratio (OR) = 0.58, P = 0.04) and a haplotype TGA (OR = 0.40, P = 0.01) were associated with reduced HCC risk after adjusting for lipid levels. In the immunohistochemistry experiment, we found that the protein expression of SOAT1 was significantly increased in the tumor compared with adjacent tissue (P < 0.001). CONCLUSION: This study revealed for the first time SOAT1 genetic variation that associates with host susceptibility to HCC occurrence. Our results suggest a role of SOAT1 in the HCC development, which warrants further elucidation.


Subject(s)
Carcinoma, Hepatocellular/genetics , Genetic Predisposition to Disease , Hepatitis B, Chronic/pathology , Liver Neoplasms/genetics , Sterol O-Acyltransferase/genetics , Adult , Aged , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Case-Control Studies , Female , Gene Expression Regulation, Neoplastic , Gene Frequency , Healthy Volunteers , Hepatitis B virus/pathogenicity , Hepatitis B, Chronic/virology , Humans , Kaplan-Meier Estimate , Liver/pathology , Liver/virology , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Liver Neoplasms/virology , Male , Middle Aged , Odds Ratio , Polymorphism, Single Nucleotide , RNA-Seq , Sterol O-Acyltransferase/metabolism
14.
Acta Pharmacol Sin ; 42(5): 767-779, 2021 May.
Article in English | MEDLINE | ID: mdl-32782394

ABSTRACT

L-Carnosine (ß-alanyl-L-histidine) is a naturally occurring dipeptide, which has shown broad-spectrum anticancer activity. But the anticancer mechanisms and regulators remain unknown. In this study, we investigated the effects of carnosine on human glioma U87 and U251 cell lines under normoxia (21% O2) and hypoxia (1% O2). We showed that carnosine (25-75 mM) dose-dependently inhibited the proliferation of the glioma cells; carnosine (50 mM) inhibited their colony formation, migration, and invasion capacity. But there was no significant difference in the inhibitory effects of carnosine under normoxia and hypoxia. Treatment with carnosine (50 mM) significantly decreased the expression of glutamine synthetase (GS) at the translation level rather than the transcription level in U87 and U251 cells, both under normoxia and hypoxia. Furthermore, the silencing of GS gene with shRNA and glutamine (Gln) deprivation significantly suppressed the growth, migratory, and invasive potential of the glioma cells. The inhibitory effect of carnosine on U87 and U251 cells was partly achieved by inhibiting the Gln metabolism pathway. Carnosine reduced the expression of GS in U87 and U251 cells by promoting the degradation of GS through the proteasome pathway, shortening the protein half-life, and reducing its stability. Given that targeting tumor metabolism is a proven efficient therapeutic tactic, our results may present new treatment strategies and drugs for improving the prognosis of gliomas.


Subject(s)
Antineoplastic Agents/pharmacology , Carnosine/pharmacology , Glioma/metabolism , Glutamine/metabolism , Apoptosis/drug effects , Cell Hypoxia/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Glutamate-Ammonia Ligase/metabolism , Humans , Proteasome Endopeptidase Complex/drug effects , Proteolysis/drug effects
15.
Appl Microbiol Biotechnol ; 105(11): 4415-4425, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34037843

ABSTRACT

The pathogenesis of gut microbiota in humans can be indicated due to the wide application of techniques, such as 16S rRNA sequencing. Presently, several studies have found a significant difference in fecal flora between normal individuals and patients with gastric cancer. Although clinical research on the feedback mechanism of gastric flora and gut microbiota is lacking, clarifying the relationship between gut microbiota and the characteristics of cancer is significant for the early diagnosis of gastric cancer. This study was conducted to review the results of several studies in the past 5 years and analyze the intestinal bacteria in patients with gastric cancer and compare them with those in patients with esophageal and small intestine cancers. It was found that the gut microbiota in patients with gastric cancer was similar to that in patients with esophageal cancer. However, making an analysis and comparing the gut microbiota in patients with small intestine and gastric cancers was impossible due to the low incidence of small intestinal cancer. Our review summarized the research progress on using the gut microbiota for early screening for gastric cancer, and the results of this study will provide a further direction in this field. KEY POINTS: • We reviewed several relative mechanisms of the gut microbiota related to gastric cancer. • The gut microbiota in gastric, esophageal, and small intestine cancers are significantly different in types and quantity, and we have provided some tips for further research. • A prospective review of sequencing methods and study results on the gut microbiota in gastric, esophageal, and small intestine cancers was described.


Subject(s)
Esophageal Neoplasms , Gastrointestinal Microbiome , Stomach Neoplasms , Humans , Intestine, Small , Prospective Studies , RNA, Ribosomal, 16S/genetics
16.
Appl Microbiol Biotechnol ; 105(2): 803-814, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33404833

ABSTRACT

Gut microbiota have been implicated in the development of cancer. Colorectal and gastric cancers, the major gastrointestinal tract cancers, are closely connected with the gut microbiome. Nevertheless, the characteristics of gut microbiota composition that correlate with gastric cancer are unclear. In this study, we investigated gut microbiota alterations during the progression of gastric cancer to identify the most relevant taxa associated with gastric cancer and evaluated the potential of the microbiome as an indicator for the diagnosis of gastric cancer. Compared with the healthy group, gut microbiota composition and diversity shifted in patients with gastric cancer. Different bacteria were used to design a random forest model, which provided an area under the curve value of 0.91. Verification samples achieved a true positive rate of 0.83 in gastric cancer. Principal component analysis showed that gastritis shares some microbiome characteristics of gastric cancer. Chemotherapy reduced the elevated bacteria levels in gastric cancer by more than half. More importantly, we found that the genera Lactobacillus and Megasphaera were associated with gastric cancer.Key Points• Gut microbiota has high sensitivity and specificity in distinguishing patients with gastric cancer from healthy individuals, indicating that gut microbiota is a potential noninvasive tool for the diagnosis of gastric cancer.• Gastritis shares some microbiota features with gastric cancer, and chemotherapy reduces the microbial abundance and diversity in gastric cancer patients.• Two bacterial taxa, namely, Lactobacillus and Megasphaera, are predictive markers for gastric cancer.


Subject(s)
Gastritis , Gastrointestinal Microbiome , Microbiota , Stomach Neoplasms , Feces , Humans , RNA, Ribosomal, 16S , Stomach Neoplasms/diagnosis
17.
Hum Mutat ; 41(5): 961-972, 2020 05.
Article in English | MEDLINE | ID: mdl-31944455

ABSTRACT

Mutations in FASTKD2, a mitochondrial RNA binding protein, have been associated with mitochondrial encephalomyopathy with isolated complex IV deficiency. However, deficiencies related to other oxidative phosphorylation system (OXPHOS) complexes have not been reported. Here, we identified three novel FASTKD2 mutations, c.808_809insTTTCAGTTTTG, homoplasmic mutation c.868C>T, and heteroplasmic mutation c.1859delT/c.868C>T, in patients with mitochondrial encephalomyopathy. Cell-based complementation assay revealed that these three FASTKD2 mutations were pathogenic. Mitochondrial functional analysis revealed that mutations in FASTKD2 impaired the mitochondrial function in patient-derived lymphocytes due to the deficiency in multi-OXPHOS complexes, whereas mitochondrial complex II remained unaffected. Consistent results were also found in human primary muscle cell and zebrafish with knockdown of FASTKD2. Furthermore, we discovered that FASTKD2 mutation is not inherently associated with epileptic seizures, optic atrophy, and loss of visual function. Alternatively, a patient with FASTKD2 mutation can show sinus tachycardia and hypertrophic cardiomyopathy, which was partially confirmed in zebrafish with knockdown of FASTKD2. In conclusion, both in vivo and in vitro studies suggest that loss of function mutation in FASTKD2 is responsible for multi-OXPHOS complexes deficiency, and FASTKD2-associated mitochondrial disease has a high degree of clinical heterogenicity.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Mitochondria/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mutation , Protein Serine-Threonine Kinases/genetics , Adenosine Triphosphate/metabolism , Alleles , Amino Acid Sequence , Animals , Cell Line , Cell Respiration/genetics , Child , Child, Preschool , DNA Mutational Analysis , Female , Gene Knockdown Techniques , Genetic Association Studies/methods , Humans , Lymphocytes/immunology , Lymphocytes/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Models, Molecular , Oxidative Phosphorylation , Pedigree , Phenotype , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Exome Sequencing , Zebrafish
18.
J Hum Genet ; 65(3): 231-240, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31907385

ABSTRACT

TOM70 is a member of the TOM complex that transports cytosolic proteins into mitochondria. Here, we identified two compound heterozygous variants in TOMM70 [c.794C>T (p.T265M) and c.1745C>T (p.A582V)] from a patient with severe anemia, lactic acidosis, and developmental delay. Patient-derived immortalized lymphocytes showed decreased TOM70 expression, oligomerized TOM70 complex, and TOM 20/22/40 complex compared with expression in control lymphocytes. Functional analysis revealed that patient-derived cells exhibited multi-oxidative phosphorylation system (OXPHOS) complex defects, with complex IV being primarily affected. As a result, patient-derived cells grew slower in galactose medium and generated less ATP and more extracellular lactic acid than did control cells. In vitro cell model compensatory experiments confirmed the pathogenicity of TOMM70 variants since only wild-type TOM70, but not mutant TOM70, could restore the complex IV defect and TOM70 expression in TOM70 knockdown U2OS cells. Altogether, we report the first case of mitochondrial disease-causing mutations in TOMM70 and demonstrate that TOM70 is essential for multi-OXPHOS assembly. Mutational screening of TOMM70 should be employed to identify mitochondrial disease-causing gene mutations in the future.


Subject(s)
Acidosis, Lactic/genetics , Anemia/genetics , Developmental Disabilities/genetics , Mitochondrial Membrane Transport Proteins/genetics , Acidosis, Lactic/pathology , Anemia/pathology , Child , Developmental Disabilities/pathology , Humans , Male , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Precursor Protein Import Complex Proteins , Mutation/genetics , Oxidative Phosphorylation , Exome Sequencing
19.
Clin Chem Lab Med ; 58(11): 1809-1817, 2020 10 25.
Article in English | MEDLINE | ID: mdl-32432562

ABSTRACT

Objectives Leigh syndrome (LS) is one of the most common mitochondrial diseases and has variable clinical symptoms. However, the genetic variant spectrum of this disease is incomplete. Methods Next-generation sequencing (NGS) was used to identify the m.14430A > G (p.W82R) variant in a patient with LS. The pathogenesis of this novel complex I (CI) variant was verified by determining the mitochondrial respiration, assembly of CI, ATP, MMP and lactate production, and cell growth rate in cybrids with and without this variant. Results A novel m.14430A > G (p.W82R) variant in the NADH dehydrogenase 6 (ND6) gene was identified in the patient; the mutant loads of m.14430A > G (p.W82R) in the patient were much higher than those in his mother. Although the transmitochondrial cybrid-based study showed that mitochondrial CI assembly remains unaffected in cells with the m.14430G variant, control cells had significantly higher endogenous and CI-dependent mitochondrial respiration than mutant cells. Accordingly, mutant cells had a lower ATP, MMP and higher extracellular lactate production than control cells. Notably, mutant cells had impaired growth in a galactose-containing medium when compared to wild-type cells. Conclusions A novel m.14430A > G (p.W82R) variant in the ND6 gene was identified from a patient suspected to have LS, and this variant impaired mitochondrial respiration by decreasing the activity of mitochondrial CI.


Subject(s)
Leigh Disease/genetics , NADH Dehydrogenase/deficiency , NADH Dehydrogenase/genetics , Cell Line, Tumor , Child, Preschool , High-Throughput Nucleotide Sequencing , Humans , Leigh Disease/enzymology , Male , Mutation, Missense
20.
Nutr Metab Cardiovasc Dis ; 30(6): 960-966, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32402592

ABSTRACT

BACKGROUND AND AIMS: Mitochondrial DNA (mtDNA) haplogroups have been associated with the development of coronary artery disease (CAD) in European populations. However, the specific mtDNA haplogroups associated with CAD have not been investigated in Chinese populations. METHODS AND RESULTS: Here, we carried out a case-control study including 1036 and 481 CAD patients and 973 and 511 geographically matched asymptomatic control subjects in southern and northern China, respectively. After adjusting for age and gender, our results indicated that mtDNA haplogroups are not associated with the occurrence of CAD and its subcategories, acute coronary syndromes and stable coronary heart disease, in both southern and northern Chinese populations. By focusing on the southern Chinese population, we further revealed that mtDNA haplogroups are not associated with CAD severity. Type 2 diabetes (T2D) and hypertension are two key driving factors for the development of CAD, nonetheless, we found that the frequencies of the 12 studied mtDNA haplogroups did not differ between patients with and without T2D or hypertension. CONCLUSION: mtDNA haplogroups are not associated with the occurrence of CAD or its subcategories in Chinese populations. Other factors such as environment and nuclear genetic background may contribute to the occurrence of CAD.


Subject(s)
Acute Coronary Syndrome/genetics , Coronary Artery Disease/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , China/epidemiology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Diabetes Mellitus/epidemiology , Female , Genetic Predisposition to Disease , Haplotypes , Humans , Hypertension/epidemiology , Male , Middle Aged , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL