ABSTRACT
While antibiotics are intended to specifically target bacteria, most are known to affect host cell physiology. In addition, some antibiotic classes are reported as immunosuppressive for reasons that remain unclear. Here, we show that Linezolid, a ribosomal-targeting antibiotic (RAbo), effectively blocked the course of a T cell-mediated autoimmune disease. Linezolid and other RAbos were strong inhibitors of T helper-17 cell effector function in vitro, showing that this effect was independent of their antibiotic activity. Perturbing mitochondrial translation in differentiating T cells, either with RAbos or through the inhibition of mitochondrial elongation factor G1 (mEF-G1) progressively compromised the integrity of the electron transport chain. Ultimately, this led to deficient oxidative phosphorylation, diminishing nicotinamide adenine dinucleotide concentrations and impairing cytokine production in differentiating T cells. In accordance, mice lacking mEF-G1 in T cells were protected from experimental autoimmune encephalomyelitis, demonstrating that this pathway is crucial in maintaining T cell function and pathogenicity.
Subject(s)
Anti-Bacterial Agents/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Linezolid/therapeutic use , Mitochondria/metabolism , Peptides, Cyclic/therapeutic use , Ribosomes/metabolism , Th17 Cells/physiology , Animals , Autoimmunity/drug effects , Cell Differentiation , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Targeted Therapy , Multiple Sclerosis/drug therapy , NAD/metabolism , Oxidative Phosphorylation , Peptide Elongation Factor G/genetics , Peptide Elongation Factor G/metabolismABSTRACT
The human microbiome has emerged as a rich source of diverse and bioactive natural products, harboring immense potential for therapeutic applications. To facilitate systematic exploration and analysis of its biosynthetic landscape, we present ABC-HuMi: the Atlas of Biosynthetic Gene Clusters (BGCs) in the Human Microbiome. ABC-HuMi integrates data from major human microbiome sequence databases and provides an expansive repository of BGCs compared to the limited coverage offered by existing resources. Employing state-of-the-art BGC prediction and analysis tools, our database ensures accurate annotation and enhanced prediction capabilities. ABC-HuMi empowers researchers with advanced browsing, filtering, and search functionality, enabling efficient exploration of the resource. At present, ABC-HuMi boasts a catalog of 19 218 representative BGCs derived from the human gut, oral, skin, respiratory and urogenital systems. By capturing the intricate biosynthetic potential across diverse human body sites, our database fosters profound insights into the molecular repertoire encoded within the human microbiome and offers a comprehensive resource for the discovery and characterization of novel bioactive compounds. The database is freely accessible at https://www.ccb.uni-saarland.de/abc_humi/.
Subject(s)
Biosynthetic Pathways , Databases, Genetic , Microbiota , Multigene Family , Humans , Biosynthetic Pathways/genetics , Computational Biology/instrumentation , Internet , Microbiota/genetics , Multigene Family/genetics , Metagenome/geneticsABSTRACT
Quantifying microbiome species and composition from metagenomic assays is often challenging due to its time-consuming nature and computational complexity. In Bioinformatics, k-mer-based approaches were long established to expedite the analysis of large sequencing data and are now widely used to annotate metagenomic data. We make use of k-mer counting techniques for efficient and accurate compositional analysis of microbiota from whole metagenome sequencing. Mibianto solves this problem by operating directly on read files, without manual preprocessing or complete data exchange. It handles diverse sequencing platforms, including short single-end, paired-end, and long read technologies. Our sketch-based workflow significantly reduces the data volume transferred from the user to the server (up to 99.59% size reduction) to subsequently perform taxonomic profiling with enhanced efficiency and privacy. Mibianto offers functionality beyond k-mer quantification; it supports advanced community composition estimation, including diversity, ordination, and differential abundance analysis. Our tool aids in the standardization of computational workflows, thus supporting reproducibility of scientific sequencing studies. It is adaptable to small- and large-scale experimental designs and offers a user-friendly interface, thus making it an invaluable tool for both clinical and research-oriented metagenomic studies. Mibianto is freely available without the need for a login at: https://www.ccb.uni-saarland.de/mibianto.
Subject(s)
Metagenomics , Microbiota , Software , Metagenomics/methods , Microbiota/genetics , Humans , Metagenome , High-Throughput Nucleotide Sequencing/methods , Internet , Workflow , Sequence Analysis, DNA/methods , Computational Biology/methodsABSTRACT
In light of the pending antibiotic resistance crisis, we need to go back to nature and search for novel anti-bacterial compounds.
Subject(s)
Anti-Bacterial Agents , Biological Evolution , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/geneticsABSTRACT
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Subject(s)
Biological Products , Drug Discovery , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Drug Resistance, MicrobialABSTRACT
Argyrins are a family of naturally produced octapeptides that display promising antimicrobial activity against Pseudomonas aeruginosa. Argyrin B (ArgB) has been shown to interact with an elongated form of the translation elongation factor G (EF-G), leading to the suggestion that argyrins inhibit protein synthesis by interfering with EF-G binding to the ribosome. Here, using a combination of cryo-electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET), we demonstrate that rather than interfering with ribosome binding, ArgB rapidly and specifically binds EF-G on the ribosome to inhibit intermediate steps of the translocation mechanism. Our data support that ArgB inhibits conformational changes within EF-G after GTP hydrolysis required for translocation and factor dissociation, analogous to the mechanism of fusidic acid, a chemically distinct antibiotic that binds a different region of EF-G. These findings shed light on the mechanism of action of the argyrin-class antibiotics on protein synthesis as well as the nature and importance of rate-limiting, intramolecular conformational events within the EF-G-bound ribosome during late-steps of translocation.
Subject(s)
Anti-Bacterial Agents , Peptide Elongation Factor G , Anti-Bacterial Agents/metabolism , Fusidic Acid/pharmacology , Humans , Oligopeptides , Peptide Elongation Factor G/metabolism , Ribosomes/metabolism , Translocation, GeneticABSTRACT
The rapid development of antibiotic resistance, especially among difficult-to-treat Gram-negative bacteria, is recognized as a serious and urgent threat to public health. The detection and characterization of novel resistance mechanisms are essential to better predict the spread and evolution of antibiotic resistance. Corramycin is a novel and modified peptidic antibiotic with activity against several Gram-negative pathogens. We demonstrate that the kinase ComG, part of the corramycin biosynthetic gene cluster, phosphorylates and thereby inactivates corramycin, leading to the resistance of the host. Remarkably, we found that the closest structural homologues of ComG are aminoglycoside phosphotransferases; however, ComG shows no activity toward this class of antibiotics. The crystal structure of ComG in complex with corramycin reveals that corramycin adopts a ß-hairpin-like structure and allowed us to define the changes leading to a switch in substrate from sugar to peptide. Bioinformatic analyses suggest a limited occurrence of ComG-like proteins, which along with the absence of cross-resistance to clinically used drugs positions corramycin as an attractive antibiotic for further development.
Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/metabolism , Kanamycin Kinase/chemistry , Kanamycin Kinase/genetics , Kanamycin Kinase/metabolism , PeptidesABSTRACT
Listeria monocytogenes is a foodborne bacterium that naturally occurs in the soil. Originating from there, it contaminates crops and infects farm animals and their consumption by humans may lead to listeriosis, a systemic life-threatening infectious disease. The adaptation of L. monocytogenes to such contrastive habitats is reflected by the presence of virulence genes for host infection and other genes for survival under environmental conditions. Among the latter are ABC transporters for excretion of antibiotics produced by environmental competitors; however, most of these transporters have not been characterized. Here, we generated a collection of promoter-lacZ fusions for genes encoding ABC-type drug transporters of L. monocytogenes and screened this reporter strain collection for induction using a library of natural compounds produced by various environmental microorganisms. We found that the timABR locus (lmo1964-lmo1962) was induced by the macrodiolide antibiotic tartrolon B, which is synthesized by the soil myxobacterium Sorangium cellulosum. Tartrolon B resistance of L. monocytogenes was dependent on timAB, encoding the ATPase and the permease component of a novel ABC transporter. Moreover, transplantation of timAB was sufficient to confer tartrolon B resistance to Bacillus subtilis. Expression of the timABR locus was found to be auto-repressed by the TimR repressor, whose repressing activity was lost in the presence of tartrolon B. We also demonstrate that tartrolon sensitivity was suppressed by high external potassium concentrations, suggesting that tartrolon acts as potassium ionophore. Our results help to map the ecological interactions of an important human pathogen with its co-residing species within their joint natural reservoir.
Subject(s)
Listeria monocytogenes , Listeriosis , Animals , Humans , Listeria monocytogenes/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Membrane Transport Proteins/metabolism , Operon/genetics , Soil , Bacterial Proteins/genetics , Bacterial Proteins/metabolismABSTRACT
Virus inactivation is a prerequisite for safe handling of high-risk infectious samples. ß-Propiolactone (BPL) is an established reagent with proven virucidal efficacy. BPL primarily reacts with DNA, RNA, and amino acids. The latter may modify antigenic protein epitopes interfering with binding properties of affinity reagents such as antibodies and aptamers used in affinity proteomic screens. We investigated (i) the impact of BPL treatment on the analysis of protein levels in plasma samples using the aptamer-based affinity proteomic platform SomaScan and (ii) effects on protein detection in conditioned medium samples using the proximity extension assay-based Olink Target platform. In the former setup, BPL-treated and native plasma samples from patients with ovarian cancer (n = 12) and benign diseases (n = 12) were analyzed using the SomaScan platform. In the latter, conditioned media samples collected from cultured T cells with (n = 3) or without (n = 3) anti-CD3 antibody stimulation were analyzed using the Olink Target platform. BPL-related changes in protein detection were evaluated comparing native and BPL-treated states, simulating virus inactivation, and impact on measurable group differences was assessed. While approximately one-third of SomaScan measurements were significantly changed by the BPL treatment, a majority of antigen/aptamer interactions remained unaffected. Interaction effects of BPL treatment and disease state, potentially altering detectability of group differences, were observable for less than one percent of targets (0.6%). BPL effects on protein detection with Olink Target were also limited, affecting 3.6% of detected proteins with no observable interaction effects. Thus, effects of BPL treatment only moderately interfere with affinity proteomic detectability of differential protein expression between different experimental groups. Overall, the results prove high-throughput affinity proteomics well suited for the analysis of high-risk samples inactivated using BPL.
Subject(s)
Propiolactone , Proteomics , Humans , Propiolactone/pharmacology , Propiolactone/metabolism , Propiolactone/chemistry , Female , Biomarkers/blood , Biomarkers/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Virus Inactivation/drug effects , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Aptamers, Nucleotide/pharmacologyABSTRACT
Chronic lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis are incurable. Epithelial senescence, a state of dysfunctional cell cycle arrest, contributes to the progression of such diseases. Therefore, lung epithelial cells are a valuable target for therapeutic intervention. Here, we present a 3D airway lung organoid platform for the preclinical testing of active substances with regard to senescence, toxicity, and inflammation under standardized conditions in a 96 well format. Senescence was induced with doxorubicin and measured by activity of senescence associated galactosidase. Pharmaceutical compounds such as quercetin antagonized doxorubicin-induced senescence without compromising organoid integrity. Using single cell sequencing, we identified a subset of cells expressing senescence markers which was decreased by quercetin. Doxorubicin induced the expression of detoxification factors specifically in goblet cells independent of quercetin. In conclusion, our platform enables for the analysis of senescence-related processes and will allow the pre-selection of a wide range of compounds (e.g. natural products) in preclinical studies, thus reducing the need for animal testing.
Subject(s)
Cystic Fibrosis , Quercetin , Animals , Quercetin/metabolism , Quercetin/pharmacology , Cellular Senescence , Lung/metabolism , Cystic Fibrosis/metabolism , Gene Expression Profiling , Doxorubicin/pharmacology , Doxorubicin/metabolism , Organoids/metabolismABSTRACT
Cystobactamids are aromatic oligoamides that exert their natural antibacterial properties by inhibition of bacterial gyrases. Such aromatic oligoamides were proposed to inhibit α-helix-mediated protein-protein interactions and may serve for specific recognition of DNA. Based on this suggestion, we designed new derivatives that have duplicated cystobactamid triarene units as model systems to decipher the specific binding mode of cystobactamids to double stranded DNA. Solution NMR analyses revealed that natural cystobactamids as well as their elongated analogues show an overall bent shape at their central aliphatic unit, with an average CX-CY-CZ angle of ~110 degrees. Our finding is corroborated by the target-bound structure of close analogues, as established by cryo-EM very recently. Cystobactamid CN-861-2 binds directly to the bacterial gyrase with an affinity of 9 µM, and also exhibits DNA-binding properties with specificity for AT-rich DNA. Elongation/dimerization of the triarene subunit of native cystobactamids is demonstrated to lead to an increase in DNA binding affinity. This implies that cystobactamids' gyrase inhibitory activity necessitates not just interaction with the gyrase itself, but also with DNA via their triarene unit.
Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Amides/chemistry , DNA , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistryABSTRACT
BACKGROUND: Tumor cells release extracellular vesicles (EVs) that contribute to the polarization of macrophages towards tumor-associated macrophages (TAMs). High expression levels of the RNA binding protein IGF2BP2/IMP2 are correlated with increased tumor cell proliferation, invasion, and poor prognosis in the clinic. However, there is a lack of understanding of whether IMP2 affects the cargo of cancer cell-derived EVs, thereby modulating macrophage polarization. METHODS: EVs were isolated from IMP2-expressing HCT116 parental cells (WT) and CRISPR/Cas9 IMP2 knockout (KO) cells. EVs were characterized according to MISEV guidelines, microRNA cargo was assessed by microRNA-Seq, and the protein cargo was analyzed by proteomics. Primary human monocyte-derived macrophages (HMDMs) were polarized by EVs, and the expression of genes and surface markers was assessed using qPCR and flow cytometry, respectively. Morphological changes of macrophages, as well as the migratory potential of cancer cells, were assessed by the Incucyte® system and macrophage matrix degradation potential by zymography. Changes in the metabolic activity of macrophages were quantified using a Seahorse® analyzer. For in vivo studies, EVs were injected into the yolk sac of zebrafish larvae, and macrophages were isolated by fluorescence-activated cell sorting. RESULTS: EVs from WT and KO cells had a similar size and concentration and were positive for 25 vesicle markers. The expression of tumor-promoting genes was higher in macrophages polarized with WT EVs than KO EVs, while the expression of TNF and IL6 was reduced. A similar pattern was observed in macrophages from zebrafish larvae treated in vivo. WT EV-polarized macrophages showed a higher abundance of TAM-like surface markers, higher matrix degrading activity, as well as a higher promotion of cancer cell migration. MicroRNA-Seq revealed a significant difference in the microRNA composition of WT and KO EVs, particularly a high abundance of miR-181a-5p in WT EVs, which was absent in KO EVs. Inhibitors of macropinocytosis and phagocytosis antagonized the delivery of miR-181a-5p into macrophages and the downregulation of the miR-181a-5p target DUSP6. Proteomics data showed differences in protein cargo in KO vs. WT EVs, with the differentially abundant proteins mainly involved in metabolic pathways. WT EV-treated macrophages exhibited a higher basal oxygen consumption rate and a lower extracellular acidification rate than KO EV-treated cells. CONCLUSION: Our results show that IMP2 determines the cargo of EVs released by cancer cells, thereby modulating the EVs' actions on macrophages. Expression of IMP2 is linked to the secretion of EVs that polarize macrophages towards a tumor-promoting phenotype.
Subject(s)
Extracellular Vesicles , RNA-Binding Proteins , Tumor-Associated Macrophages , Zebrafish , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Tumor-Associated Macrophages/metabolism , HCT116 Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Movement/genetics , Macrophages/metabolismABSTRACT
Biological traces inside firearm barrels were observed as a result of contact shots to the head. The present study was conducted to investigate the influence of the muzzle to target distance on staining inside the anterior and posterior part of firearm barrels. Ninety-nine shots were fired to so-called reference cubes (10% gelatine, 12 cm edge length, embedded paint-blood-pad) using three current handguns. Shot range was varied from contact to 50 cm distance. High-speed cameras recorded external backspatter. Endoscopic examination assessed visible staining along the barrel. Each two swabbings were gathered from the anterior and the posterior part of the barrel. The first swabs were submitted to quantitative PCR, the second ones to DNA-RNA-co-extraction. Thorough mechanical and chemical cleaning was performed to avoid any contamination which was controlled by negative zero swabs after each cleaning. In single shots up to 50 cm distance, minimal, but DNA-positive sporadic traces were detected inside the barrel in vicinity of the muzzle. Visible complex staining varying in extent was observed in the anterior barrel part for 10 cm or less distance in dependence of the calibre. The posterior part showed detectable traces only after close range shots (< 5 cm). Generally staining inside the barrel decreased from the muzzle to the rear end, which correlated with the yield of DNA. Some contact shots did not cause any staining in the posterior part of the barrel despite massive external backspatter. Blood-specific miRNA was primarily found where DNA was detected. This experience encourages to take a second swab for RNA analysis. The amount of nucleic acids in the barrel at varying muzzle to target distances is subject to large variations between individual shots and therefore appears not suitable for a reliable determination of the shot distance in a particular case on its own. Instead, shot range estimation should also take into account morphology and distribution of traces inside the barrel.
Subject(s)
Firearms , MicroRNAs , Wounds, Gunshot , Humans , Forensic Ballistics , Models, Biological , DNA/genetics , Staining and LabelingABSTRACT
Despite recent methodology and reference database improvements for taxonomic profiling tools, metagenomic assembly and genomic binning remain important pillars of metagenomic analysis workflows. In case reference information is lacking, genomic binning is considered to be a state-of-the-art method in mixed culture metagenomic data analysis. In this light, our previously published tool BusyBee Web implements a composition-based binning method efficient enough to function as a rapid online utility. Handling assembled contigs and long nanopore generated reads alike, the webserver provides a wide range of supplementary annotations and visualizations. Half a decade after the initial publication, we revisited existing functionality, added comprehensive visualizations, and increased the number of data analysis customization options for further experimentation. The webserver now allows for visualization-supported differential analysis of samples, which is computationally expensive and typically only performed in coverage-based binning methods. Further, users may now optionally check their uploaded samples for plasmid sequences using PLSDB as a reference database. Lastly, a new application programming interface with a supporting python package was implemented, to allow power users fully automated access to the resource and integration into existing workflows. The webserver is freely available under: https://www.ccb.uni-saarland.de/busybee.
Subject(s)
Algorithms , Metagenome , Software , Metagenomics/methods , Workflow , Sequence Analysis, DNAABSTRACT
Plasmids are known to contain genes encoding for virulence factors and antibiotic resistance mechanisms. Their relevance in metagenomic data processing is steadily growing. However, with the increasing popularity and scale of metagenomics experiments, the number of reported plasmids is rapidly growing as well, amassing a considerable number of false positives due to undetected misassembles. Here, our previously published database PLSDB provides a reliable resource for researchers to quickly compare their sequences against selected and annotated previous findings. Within two years, the size of this resource has more than doubled from the initial 13,789 to now 34,513 entries over the course of eight regular data updates. For this update, we aggregated community feedback for major changes to the database featuring new analysis functionality as well as performance, quality, and accessibility improvements. New filtering steps, annotations, and preprocessing of existing records improve the quality of the provided data. Additionally, new features implemented in the web-server ease user interaction and allow for a deeper understanding of custom uploaded sequences, by visualizing similarity information. Lastly, an application programming interface was implemented along with a python library, to allow remote database queries in automated workflows. The latest release of PLSDB is freely accessible under https://www.ccb.uni-saarland.de/plsdb.
Subject(s)
Bacteria/genetics , Databases, Genetic , Plasmids/chemistry , User-Computer Interface , Actinobacteria/genetics , Actinobacteria/pathogenicity , Bacteria/classification , Bacteria/pathogenicity , Bacteroidetes/genetics , Bacteroidetes/pathogenicity , Drug Resistance, Microbial/genetics , Firmicutes/genetics , Firmicutes/pathogenicity , Internet , Metagenomics/methods , Molecular Sequence Annotation , Plasmids/classification , Plasmids/metabolism , Proteobacteria/genetics , Proteobacteria/pathogenicity , Spirochaetales/genetics , Spirochaetales/pathogenicity , Tenericutes/genetics , Tenericutes/pathogenicity , Virulence/geneticsABSTRACT
Designing novel candidates as potential antibacterial scaffolds has become crucial due to the lack of new antibiotics entering the market and the persistent rise in multidrug resistance. Here, we describe a new class of potent antibacterial agents based on a 5-aryl-N2,N4-dibutylpyrimidine-2,4-diamine scaffold. Structural optimization focused on the 5-aryl moiety and the bioisosteric replacement of the side chain linker atom. Screening of the synthesized compounds focused on a panel of bacterial strains, including gram-positive Staphylococcus aureus strains (Newman MSSA, methicillin- and vancomycin-resistant), and the gram-negative Escherichia coli (ΔAcrB strain). Several compounds showed broad-spectrum antibacterial activity with compound 12, bearing a 4-chlorophenyl substituent, being the most potent among this series of compounds. This frontrunner compound revealed a minimum inhibitory concentration (MIC) value of 1 µg/mL against the S. aureus strain (Mu50 methicillin-resistant S. aureus/vancomycin-intermediate S. aureus) and an MIC of 2 µg/mL against other tested strains. The most potent derivatives were further tested against a wider panel of bacteria and evaluated for their cytotoxicity, revealing further potent activities toward Streptococcus pneumoniae, Enterococcus faecium, and Enterococcus faecalis. To explore the mode of action, compound 12 was tested in a macromolecule inhibition assay. The obtained data were supported by the safety profile of compound 12, which possessed an IC50 of 12.3 µg/mL against HepG2 cells. The current results hold good potential for a new class of extended-spectrum antibacterial agents.
Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus , Structure-Activity Relationship , Bacteria , Pyrimidines/pharmacology , Microbial Sensitivity TestsABSTRACT
The authors would like to make the following corrections to the original publication [...].
ABSTRACT
Sphingoid bases are important bioactive lipids found in a variety of organisms, serving as the backbone of sphingolipids, which regulate essential physiological processes. Here we describe the total synthesis and structure revision of halisphingosine A, a sphingoid base initially isolated from marine sponges. To address inconsistencies in the NMR interpretation of this natural product, we developed a synthetic route involving a late-stage enantioselective Henry reaction that allows access to multiple stereoisomers of the proposed halisphingosine core structure. Our library of 32 fully characterized synthetic stereoisomers enabled us to rectify the structure of halisphingosine A as (2R,3R,8R,Z)-2-aminooctadec-9-ene-1,3,8-triol, and to pursue further structure-activity relation (SAR) studies regarding their antimicrobial and cytotoxic potential. In summary, our study offers a yet unreported compound library along with validated analytical datasets of marine sphingoid base derivatives, which significantly affects future ecometabolomic marine research and will facilitate the identification of inhibitors of sphingolipid metabolism or antagonists of sphingolipid base-sensing receptors.
ABSTRACT
The recently identified natural product NOSO-95A from entomopathogenic Xenorhabdus bacteria, derived from a biosynthetic gene cluster (BGC) encoding a non-ribosomal peptide synthetase (NRPS), was the first member of the odilorhabdin class of antibiotics. This class exhibits broad-spectrum antibiotic activity and inspired the development of the synthetic derivative NOSO-502, which holds potential as a new clinical drug by breaking antibiotic resistance. While the mode of action of odilorhabdins was broadly investigated, their biosynthesis pathway remained poorly understood. Here we describe the heterologous production of NOSO-95A in Escherichia coli after refactoring the complete BGC. Since the production titer was low, NRPS engineering was applied to uncover the underlying biosynthetic principles. For this, modules of the odilorhabdin NRPS fused to other synthetases were co-expressed with candidate hydroxylases encoded in the BGC allowing the characterization of the biosynthesis of three unusual amino acids and leading to the identification of a prodrug-activation mechanism by deacylation. Our work demonstrates the application of NRPS engineering as a blueprint to mechanistically elucidate large or toxic NRPS and provides the basis to generate novel odilorhabdin analogues with improved properties in the future.
Subject(s)
Multigene Family , Peptide Synthases , Xenorhabdus , Peptide Synthases/genetics , Peptide Synthases/metabolism , Xenorhabdus/genetics , Xenorhabdus/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolismABSTRACT
Dithiolopyrrolone (DTP) natural products are produced by several different bacteria and have potent antibacterial, antifungal and anticancer activities. While the amide of their DTP core can be methylated to fine-tune bioactivity, the enzyme responsible for the amide N-methylation has remained elusive in most taxa. Here, we identified the amide methyltransferase XrdM that is responsible for xenorhabdin (XRD) methylation in Xenorhabdus doucetiae but encoded outside of the XRD gene cluster. XrdM turned out to be isofunctional with the recently reported methyltransferase DtpM, that is involved in the biosynthesis of the DTP thiolutin, although its X-ray structure is unrelated to that of DtpM. To investigate the structural basis for ligand binding in both enzymes, we used X-ray crystallography, modeling, site-directed mutagenesis, and kinetic activity assays. Our study expands the limited knowledge of post-non-ribosomal peptide synthetase (NRPS) amide methylation in DTP biosynthesis and reveals an example of convergent evolution of two structurally completely different enzymes for the same reaction in different organisms.