Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 463
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 22(12): 1577-1589, 2021 12.
Article in English | MEDLINE | ID: mdl-34811546

ABSTRACT

Single-cell genomics technology has transformed our understanding of complex cellular systems. However, excessive cost and a lack of strategies for the purification of newly identified cell types impede their functional characterization and large-scale profiling. Here, we have generated high-content single-cell proteo-genomic reference maps of human blood and bone marrow that quantitatively link the expression of up to 197 surface markers to cellular identities and biological processes across all main hematopoietic cell types in healthy aging and leukemia. These reference maps enable the automatic design of cost-effective high-throughput cytometry schemes that outperform state-of-the-art approaches, accurately reflect complex topologies of cellular systems and permit the purification of precisely defined cell states. The systematic integration of cytometry and proteo-genomic data enables the functional capacities of precisely mapped cell states to be measured at the single-cell level. Our study serves as an accessible resource and paves the way for a data-driven era in cytometry.


Subject(s)
Blood Cells/metabolism , Bone Marrow Cells/metabolism , Cell Separation , Flow Cytometry , Gene Expression Profiling , Proteome , Proteomics , Single-Cell Analysis , Transcriptome , Age Factors , Blood Cells/immunology , Blood Cells/pathology , Bone Marrow Cells/immunology , Bone Marrow Cells/pathology , Cells, Cultured , Databases, Genetic , Healthy Aging/genetics , Healthy Aging/immunology , Healthy Aging/metabolism , Humans , Leukemia/genetics , Leukemia/immunology , Leukemia/metabolism , Leukemia/pathology , RNA-Seq , Systems Biology
2.
Cell ; 174(1): 172-186.e21, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29958106

ABSTRACT

The fusion oncoprotein CBFß-SMMHC, expressed in leukemia cases with chromosome 16 inversion, drives leukemia development and maintenance by altering the activity of the transcription factor RUNX1. Here, we demonstrate that CBFß-SMMHC maintains cell viability by neutralizing RUNX1-mediated repression of MYC expression. Upon pharmacologic inhibition of the CBFß-SMMHC/RUNX1 interaction, RUNX1 shows increased binding at three MYC distal enhancers, where it represses MYC expression by mediating the replacement of the SWI/SNF complex component BRG1 with the polycomb-repressive complex component RING1B, leading to apoptosis. Combining the CBFß-SMMHC inhibitor with the BET inhibitor JQ1 eliminates inv(16) leukemia in human cells and a mouse model. Enhancer-interaction analysis indicated that the three enhancers are physically connected with the MYC promoter, and genome-editing analysis demonstrated that they are functionally implicated in deregulation of MYC expression. This study reveals a mechanism whereby CBFß-SMMHC drives leukemia maintenance and suggests that inhibitors targeting chromatin activity may prove effective in inv(16) leukemia therapy.


Subject(s)
Apoptosis , Chromatin/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/metabolism , Animals , Apoptosis/drug effects , Azepines/pharmacology , Azepines/therapeutic use , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Inversion/drug effects , Core Binding Factor Alpha 2 Subunit/chemistry , Core Binding Factor Alpha 2 Subunit/metabolism , DNA/chemistry , DNA/metabolism , DNA Helicases/metabolism , Disease Models, Animal , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Nuclear Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Polycomb Repressive Complex 1/metabolism , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism , Triazoles/pharmacology , Triazoles/therapeutic use
4.
Blood ; 143(13): 1269-1281, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38197505

ABSTRACT

ABSTRACT: Acute myeloid leukemia (AML) is a hematologic malignancy for which allogeneic hematopoietic cell transplantation (allo-HCT) often remains the only curative therapeutic approach. However, incapability of T cells to recognize and eliminate residual leukemia stem cells might lead to an insufficient graft-versus-leukemia (GVL) effect and relapse. Here, we performed single-cell RNA-sequencing (scRNA-seq) on bone marrow (BM) T lymphocytes and CD34+ cells of 6 patients with AML 100 days after allo-HCT to identify T-cell signatures associated with either imminent relapse (REL) or durable complete remission (CR). We observed a higher frequency of cytotoxic CD8+ effector and gamma delta (γδ) T cells in CR vs REL samples. Pseudotime and gene regulatory network analyses revealed that CR CD8+ T cells were more advanced in maturation and had a stronger cytotoxicity signature, whereas REL samples were characterized by inflammatory tumor necrosis factor/NF-κB signaling and an immunosuppressive milieu. We identified ADGRG1/GPR56 as a surface marker enriched in CR CD8+ T cells and confirmed in a CD33-directed chimeric antigen receptor T cell/AML coculture model that GPR56 becomes upregulated on T cells upon antigen encounter and elimination of AML cells. We show that GPR56 continuously increases at the protein level on CD8+ T cells after allo-HCT and confirm faster interferon gamma (IFN-γ) secretion upon re-exposure to matched, but not unmatched, recipient AML cells in the GPR56+ vs GPR56- CD8+ T-cell fraction. Together, our data provide a single-cell reference map of BM-derived T cells after allo-HCT and propose GPR56 expression dynamics as a surrogate for antigen encounter after allo-HCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Bone Marrow/pathology , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/drug therapy , CD8-Positive T-Lymphocytes/pathology , Recurrence
5.
Blood ; 143(22): 2284-2299, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38457355

ABSTRACT

ABSTRACT: Epigenetic modulation of the cell-intrinsic immune response holds promise as a therapeutic approach for leukemia. However, current strategies designed for transcriptional activation of endogenous transposons and subsequent interferon type-I (IFN-I) response, show limited clinical efficacy. Histone lysine methylation is an epigenetic signature in IFN-I response associated with suppression of IFN-I and IFN-stimulated genes, suggesting histone demethylation as key mechanism of reactivation. In this study, we unveil the histone demethylase PHF8 as a direct initiator and regulator of cell-intrinsic immune response in acute myeloid leukemia (AML). Site-specific phosphorylation of PHF8 orchestrates epigenetic changes that upregulate cytosolic RNA sensors, particularly the TRIM25-RIG-I-IFIT5 axis, thereby triggering the cellular IFN-I response-differentiation-apoptosis network. This signaling cascade largely counteracts differentiation block and growth of human AML cells across various disease subtypes in vitro and in vivo. Through proteome analysis of over 200 primary AML bone marrow samples, we identify a distinct PHF8/IFN-I signature in half of the patient population, without significant associations with known clinically or genetically defined AML subgroups. This profile was absent in healthy CD34+ hematopoietic progenitor cells, suggesting therapeutic applicability in a large fraction of patients with AML. Pharmacological support of PHF8 phosphorylation significantly impairs the growth in samples from patients with primary AML. These findings provide novel opportunities for harnessing the cell-intrinsic immune response in the development of immunotherapeutic strategies against AML.


Subject(s)
Epigenesis, Genetic , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Animals , Histone Demethylases/genetics , Histone Demethylases/metabolism , Mice , Interferon Type I/metabolism , Cell Self Renewal , Gene Expression Regulation, Leukemic
6.
Blood ; 142(19): 1633-1646, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37390336

ABSTRACT

Intratumor heterogeneity as a clinical challenge becomes most evident after several treatment lines, when multidrug-resistant subclones accumulate. To address this challenge, the characterization of resistance mechanisms at the subclonal level is key to identify common vulnerabilities. In this study, we integrate whole-genome sequencing, single-cell (sc) transcriptomics (scRNA sequencing), and chromatin accessibility (scATAC sequencing) together with mitochondrial DNA mutations to define subclonal architecture and evolution for longitudinal samples from 15 patients with relapsed or refractory multiple myeloma. We assess transcriptomic and epigenomic changes to resolve the multifactorial nature of therapy resistance and relate it to the parallel occurrence of different mechanisms: (1) preexisting epigenetic profiles of subclones associated with survival advantages, (2) converging phenotypic adaptation of genetically distinct subclones, and (3) subclone-specific interactions of myeloma and bone marrow microenvironment cells. Our study showcases how an integrative multiomics analysis can be applied to track and characterize distinct multidrug-resistant subclones over time for the identification of molecular targets against them.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiomics , Mutation , Transcriptome , Tumor Microenvironment/genetics
7.
Blood ; 141(14): 1685-1690, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36608320

ABSTRACT

Activating BRAF mutations are found in a small subset of patients with newly diagnosed multiple myeloma, but prevalence increases in late-stage, refractory disease, and the mutations are associated with adverse outcome. This prospective single-arm, open-label, multicenter phase 2 trial assessed the efficacy and safety of combined BRAF/MEK inhibition, using encorafenib and binimetinib, in patients with relapsed/refractory multiple myeloma (RRMM) carrying a BRAFV600E mutation. Patients received 450 mg encorafenib once daily and binimetinib 45 mg twice daily. The primary end point was the overall response rate achieved within the first year after start of treatment according to International Myeloma Working Group criteria. Twelve RRMM patients with a median of 5 prior lines of therapy were enrolled. The overall response rate was 83.3%, with 10 patients achieving at least a partial response. The median progression-free survival was 5.6 months, and overall survival was 55% at 24 months. Emerging resistance to therapy was driven by RAS mutations and structural variants involving the BRAF locus. This is the first prospective clinical trial to demonstrate that combined BRAF/MEK inhibition is highly effective in patients with BRAFV600E-mutated RRMM, and it represents a successful targeted precision medicine approach in this disease. This trial was registered at www.clinicaltrials.gov as #NCT02834364.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Proto-Oncogene Proteins B-raf/genetics , Prospective Studies , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Mitogen-Activated Protein Kinase Kinases/therapeutic use
8.
Blood ; 141(15): 1846-1857, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36508705

ABSTRACT

NPM 1-mutated acute myeloid leukemia (AML) shows unique features. However, the characteristics of "therapy-related" NPM1-mutated AML (t-NPM1 AML) are poorly understood. We compared the genetics, transcriptional profile, and clinical outcomes of t-NPM1 AML, de novo NPM1-mutated AML (dn-NPM1 AML), and therapy-related AML (t-AML) with wild-type NPM1 (t-AML). Normal karyotype was more frequent in t-NPM1 AML (n = 78/96, 88%) and dn-NPM1 (n = 1986/2394, 88%) than in t-AML (n = 103/390, 28%; P < .001). DNMT3A and TET2 were mutated in 43% and 40% of t-NPM1 AML (n = 107), similar to dn-NPM1 (n = 88, 48% and 30%; P > 0.1), but more frequently than t-AML (n = 162; 14% and 10%; P < 0.001). Often mutated in t-AML, TP53 and PPM1D were wild-type in 97% and 96% of t-NPM1 AML, respectively. t-NPM1 and dn-NPM1 AML were transcriptionally similar, (including HOX genes upregulation). At 62 months of median follow-up, the 3-year overall survival (OS) for t-NPM1 AML (n = 96), dn-NPM1 AML (n = 2394), and t-AML (n = 390) were 54%, 60%, and 31%, respectively. In multivariable analysis, OS was similar for the NPM1-mutated groups (hazard ratio [HR] 0.9; 95% confidence interval [CI], 0.65-1.25; P = .45), but better in t-NPM1 AML than in t-AML (HR, 1.86; 95% CI, 1.30-2.68; P < .001). Relapse-free survival was similar between t-NPM1 and dn-NPM1 AML (HR, 1.02; 95% CI, 0.72-1.467; P = .90), but significantly higher in t-NPM1 AML versus t-AML (HR, 1.77; 95% CI, 1.19-2.64; P = .0045). t-NPM1 and dn-NPM1 AML have overlapping features, suggesting that they should be classified as a single disease entity.


Subject(s)
Leukemia, Myeloid, Acute , Nuclear Proteins , Humans , Nuclear Proteins/genetics , Nucleophosmin , Mutation , Prognosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy
9.
Blood ; 141(5): 534-549, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36322930

ABSTRACT

Germ line DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here we performed a comprehensive characterization of DDX41-mutated MNs, enrolling a total of 346 patients with DDX41 pathogenic/likely-pathogenic (P/LP) germ line variants and/or somatic mutations from 9082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients. P/LP DDX41 germ line variants explained ∼80% of known germ line predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n = 4461) compared with the general population of Japan (n = 20 238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years of age but rapidly increased to 49% by 90 years of age. Patients with myelodysplastic syndromes (MDS) along with a DDX41-mutation rapidly progressed to acute myeloid leukemia (AML), which was however, confined to those having truncating variants. Comutation patterns at diagnosis and at progression to AML were substantially different between DDX41-mutated and WT cases, in which none of the comutations affected clinical outcomes. Even TP53 mutations made no exceptions and their dismal effect, including multihit allelic status, on survival was almost completely mitigated by the presence of DDX41 mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System. Our findings establish that MDS with DDX41-mutation defines a unique subtype of MNs that is distinct from other MNs.


Subject(s)
DEAD-box RNA Helicases , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Myeloproliferative Disorders , Adult , Aged, 80 and over , Female , Humans , Male , DEAD-box RNA Helicases/genetics , Germ Cells , Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/genetics
10.
Int J Cancer ; 155(4): 618-626, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38721724

ABSTRACT

Immunocompromised patients are at high risk to fail clearance of SARS-CoV-2. Prolonged COVID-19 constitutes a health risk and a management problem as cancer treatments often have to be disrupted. As SARS-CoV-2 evolves, new variants of concern have emerged that evade available monoclonal antibodies. Moreover, antiviral therapy promotes SARS-CoV-2 escape mutations, particularly in immunocompromised patients. These patients frequently suffer from prolonged infection. No successful treatment has been established for persistent COVID-19 infection. Here, we report on a series of 21 immunocompromised patients with COVID-19-most of them hematologic malignancies-treated with plasma obtained from recently convalescent or vaccinated donors or a combination thereof. Repeated dosing of SARS-CoV-2-antibody-containing plasma could clear SARS-CoV-2 infection in 16 out of 21 immunocompromised patients even if COVID-19-specific treatments failed to induce sustained viral clearance or to improve clinical course of SARS-CoV-2 infection. Ten patients were major responders defined as an increase delta(d)Ct of > = 5 after the first administration of convalescent and/or vaccinated plasma (C/VP). On average, SARS-CoV-2 PCR Ct values increased from a median value of 22.55 (IQR = 19.10-24.25) to a median value of 29.57 (IQR = 27.55-34.63; p = <.0001) in the major response subgroup. Furthermore, when treated a second time with C/VP, even 4 out of 5 of the initial nonresponders showed an increase in Ct-values from a median value of 23.13 (IQR = 17.75-28.05) to a median value of 32.79 (IQR = 31.75-33.75; p = .013). Our results suggest that C/VP could be a feasible treatment of COVID-19 infection in patients with hematologic malignancies who did not respond to antiviral treatment.


Subject(s)
COVID-19 Serotherapy , COVID-19 , Hematologic Neoplasms , Immunization, Passive , Immunocompromised Host , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/virology , COVID-19/prevention & control , COVID-19/therapy , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology , Hematologic Neoplasms/virology , Female , Middle Aged , Male , Aged , SARS-CoV-2/immunology , Immunization, Passive/methods , Immunocompromised Host/immunology , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Chronic Disease , Treatment Outcome
11.
Br J Haematol ; 204(6): 2254-2258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593353

ABSTRACT

We conducted a phase I trial in newly diagnosed acute myeloid leukaemia (AML) to investigate the combination of two novel targeted agents, gemtuzumab ozogamicin (GO) and midostaurin, with intensive chemotherapy in FLT3-mutated AML and CBF leukaemia. Three dose levels of midostaurin and one to three sequential doses of 3 mg/m2 GO in combination with '7 + 3' induction were evaluated. Based on safety findings in 12 patients, our results show that 3 mg/m2 GO on Days 1 + 4 and 100 mg midostaurin on Days 8-21 can be safely combined with IC in newly diagnosed AML.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Gemtuzumab , Leukemia, Myeloid, Acute , Staurosporine , Humans , Staurosporine/analogs & derivatives , Staurosporine/administration & dosage , Staurosporine/therapeutic use , Staurosporine/adverse effects , Gemtuzumab/administration & dosage , Gemtuzumab/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Male , Middle Aged , Female , Aged , Adult , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Induction Chemotherapy , fms-Like Tyrosine Kinase 3/genetics , Aminoglycosides/administration & dosage , Aminoglycosides/therapeutic use
12.
Ann Rheum Dis ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561219

ABSTRACT

OBJECTIVES: A timely diagnosis is imperative for curing cancer. However, in patients with rheumatic musculoskeletal diseases (RMDs) or paraneoplastic syndromes, misleading symptoms frequently delay cancer diagnosis. As metabolic remodelling characterises both cancer and RMD, we analysed if a metabolic signature can indicate paraneoplasia (PN) or reveal concomitant cancer in patients with RMD. METHODS: Metabolic alterations in the sera of rheumatoid arthritis (RA) patients with (n=56) or without (n=52) a history of invasive cancer were quantified by nuclear magnetic resonance analysis. Metabolites indicative of cancer were determined by multivariable regression analyses. Two independent RA and spondyloarthritis (SpA) cohorts with or without a history of invasive cancer were used for blinded validation. Samples from patients with active cancer or cancer treatment, pulmonary and lymphoid type cancers, paraneoplastic syndromes, non-invasive (NI) precancerous lesions and non-melanoma skin cancer and systemic lupus erythematosus and samples prior to the development of malignancy were used to test the model performance. RESULTS: Based on the concentrations of acetate, creatine, glycine, formate and the lipid ratio L1/L6, a diagnostic model yielded a high sensitivity and specificity for cancer diagnosis with AUC=0.995 in the model cohort, AUC=0.940 in the blinded RA validation cohort and AUC=0.928 in the mixed RA/SpA cohort. It was equally capable of identifying cancer in patients with PN. The model was insensitive to common demographic or clinical confounders or the presence of NI malignancy like non-melanoma skin cancer. CONCLUSIONS: This new set of metabolic markers reliably predicts the presence of cancer in arthritis or PN patients with high sensitivity and specificity and has the potential to facilitate a rapid and correct diagnosis of malignancy.

13.
Blood ; 140(24): 2594-2610, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35857899

ABSTRACT

BCL-2 inhibition has been shown to be effective in acute myeloid leukemia (AML) in combination with hypomethylating agents or low-dose cytarabine. However, resistance and relapse represent major clinical challenges. Therefore, there is an unmet need to overcome resistance to current venetoclax-based strategies. We performed high-throughput drug screening to identify effective combination partners for venetoclax in AML. Overall, 64 antileukemic drugs were screened in 31 primary high-risk AML samples with or without venetoclax. Gilteritinib exhibited the highest synergy with venetoclax in FLT3 wild-type AML. The combination of gilteritinib and venetoclax increased apoptosis, reduced viability, and was active in venetoclax-azacitidine-resistant cell lines and primary patient samples. Proteomics revealed increased FLT3 wild-type signaling in specimens with low in vitro response to the currently used venetoclax-azacitidine combination. Mechanistically, venetoclax with gilteritinib decreased phosphorylation of ERK and GSK3B via combined AXL and FLT3 inhibition with subsequent suppression of the antiapoptotic protein MCL-1. MCL-1 downregulation was associated with increased MCL-1 phosphorylation of serine 159, decreased phosphorylation of threonine 161, and proteasomal degradation. Gilteritinib and venetoclax were active in an FLT3 wild-type AML patient-derived xenograft model with TP53 mutation and reduced leukemic burden in 4 patients with FLT3 wild-type AML receiving venetoclax-gilteritinib off label after developing refractory disease under venetoclax-azacitidine. In summary, our results suggest that combined inhibition of FLT3/AXL potentiates venetoclax response in FLT3 wild-type AML by inducing MCL-1 degradation. Therefore, the venetoclax-gilteritinib combination merits testing as a potentially active regimen in patients with high-risk FLT3 wild-type AML.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Azacitidine , fms-Like Tyrosine Kinase 3/genetics
14.
Blood ; 139(1): 87-103, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34320176

ABSTRACT

Biallelic mutations of the CEBPA gene (CEBPAbi) define a distinct entity associated with favorable prognosis; however, the role of monoallelic mutations (CEBPAsm) is poorly understood. We retrospectively analyzed 4708 adults with acute myeloid leukemia (AML) who had been recruited into the Study Alliance Leukemia trials, to investigate the prognostic impact of CEBPAsm. CEBPA mutations were identified in 240 patients (5.1%): 131 CEBPAbi and 109 CEBPAsm (60 affecting the N-terminal transactivation domains [CEBPAsmTAD] and 49 the C-terminal DNA-binding or basic leucine zipper region [CEBPAsmbZIP]). Interestingly, patients carrying CEBPAbi or CEBPAsmbZIP shared several clinical factors: they were significantly younger (median, 46 and 50 years, respectively) and had higher white blood cell (WBC) counts at diagnosis (median, 23.7 × 109/L and 35.7 × 109/L) than patients with CEBPAsmTAD (median age, 63 years, median WBC 13.1 × 109/L; P < .001). Co-mutations were similar in both groups: GATA2 mutations (35.1% CEBPAbi; 36.7% CEBPAsmbZIP vs 6.7% CEBPAsmTAD; P < .001) or NPM1 mutations (3.1% CEBPAbi; 8.2% CEBPAsmbZIP vs 38.3% CEBPAsmTAD; P < .001). CEBPAbi and CEBPAsmbZIP, but not CEBPAsmTAD were associated with significantly improved overall (OS; median 103 and 63 vs 13 months) and event-free survival (EFS; median, 20.7 and 17.1 months vs 5.7 months), in univariate and multivariable analyses. Additional analyses revealed that the clinical and molecular features as well as the favorable survival were confined to patients with in-frame mutations in bZIP (CEBPAbZIP-inf). When patients were classified according to CEBPAbZIP-inf and CEBPAother (including CEBPAsmTAD and non-CEBPAbZIP-inf), only patients bearing CEBPAbZIP-inf showed superior complete remission rates and the longest median OS and EFS, arguing for a previously undefined prognostic role of this type of mutation.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Aged , Basic-Leucine Zipper Transcription Factors/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Female , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/metabolism , Male , Middle Aged , Prognosis , Protein Binding , Retrospective Studies , Survival Analysis
16.
Haematologica ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654660

ABSTRACT

In newly diagnosed acute myeloid leukemia, immediate initiation of treatment is standard of care. However, deferral of antileukemic therapy may be indicated to assess comorbidities or pre-therapeutic risk factors. We explored the impact of time from diagnosis to treatment on outcomes in newly diagnosed acute myeloid leukemia undergoing venetoclax-based therapy in two distinct cohorts. By querying the Study Alliance Leukemia database and the global health network TriNetX, we identified 138 and 717 patients respectively with an average age of 76 and 72 years who received venetoclax-based firstline therapy. When comparing patients who started treatment earlier or later than 10 days after initial diagnosis, no significant difference in median overall survival was observed - neither in the SAL cohort (7.7 vs. 9.6 months, p=.42) nor in the TriNetX cohort (7.5 vs. 7.2 months, p=.41). Similarly, severe infections, bleeding, and thromboembolic events were equally observed between early and later treatments, both in the overall patient groups and specific subgroups (age ≥75 years or leukocytes ≥20x109/L). This retrospective analysis indicates that delaying the start of venetoclax-based therapy in newly diagnosed acute myeloid leukemia might be a safe option for selected patients, provided that close clinical monitoring is performed.

17.
Eur J Haematol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898589

ABSTRACT

OBJECTIVES: Despite major advances in treatment options for multiple myeloma (MM), patients refractory to the main drug classes and those with aggressive, especially extramedullary disease, still face a dismal outcome. For these patients, effective therapeutic options are urgently warranted. METHODS: In this retrospective study, we report on the safety and efficacy of the intensive combination regimen of pomalidomide plus cisplatin, doxorubicin, cyclophosphamide, and etoposide (Pom-PACE) in patients with relapsed refractory MM (RRMM) or plasma cell leukemia (PCL). A study population of 20 consecutive patients treated with Pom-PACE at two academic centers was included for analysis. All patients had to have a confirmed relapse according to International Myeloma Working Group criteria and adequate organ function prior to the start of therapy. Data were collected by reviewing medical charts. Exploratory analyses were performed with regard to efficacy and safety. RESULTS: Patients were heavily pretreated with a median number of four prior therapies (range: 1-10). All patients were exposed to immunomodulators, proteasome inhibitors, and alkylating agents, 80% were double-class refractory, 40% were triple-class refractory. Extramedullary MM or PCL were present in 15 patients (75%). Overall response rate (ORR) was 68%, with 31% achieving at least a very good partial response. Responses were achieved rapidly with an ORR of 64% after one cycle. Median progression-free survival was 8.9 months (0.92-not reached [NR]) and median overall survival was 11.8 months (3-40.6). Pom-PACE was associated with significant toxicity. All evaluable patients experienced Grade 4 hematological toxicity. However, no treatment related mortality was observed. CONCLUSION: Pomalidomide-PACE was able to induce rapid responses in heavily pretreated, aggressive RRMM with a manageable toxicity profile and therefore offers an effective salvage regimen and a potential bridging strategy to further treatment options such as chimeric antigen receptor T-cell therapy.

18.
J Am Soc Nephrol ; 34(1): 160-174, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36137752

ABSTRACT

BACKGROUND: We recently demonstrated that donor-derived modified immune cells (MICs)-PBMCs that acquire immunosuppressive properties after a brief treatment-induced specific immunosuppression against the allogeneic donor when administered before kidney transplantation. We found up to a 68-fold increase in CD19 + CD24 hi CD38 hi transitional B lymphocytes compared with transplanted controls. METHODS: Ten patients from a phase 1 clinical trial who had received MIC infusions before kidney transplantation were followed to post-transplant day 1080. RESULTS: Patients treated with MICs had a favorable clinical course, showing no donor-specific human leukocyte antigen antibodies or acute rejections. The four patients who had received the highest dose of MICs 7 days before surgery and were on reduced immunosuppressive therapy showed an absence of in vitro lymphocyte reactivity against stimulatory donor blood cells, whereas reactivity against third party cells was preserved. In these patients, numbers of transitional B lymphocytes were 75-fold and seven-fold higher than in 12 long-term survivors on minimal immunosuppression and four operationally tolerant patients, respectively ( P <0.001 for both). In addition, we found significantly higher numbers of other regulatory B lymphocyte subsets and a gene expression signature suggestive of operational tolerance in three of four patients. In MIC-treated patients, in vitro lymphocyte reactivity against donor blood cells was restored after B lymphocyte depletion, suggesting a direct pathophysiologic role of regulatory B lymphocytes in donor-specific unresponsiveness. CONCLUSIONS: These results indicate that donor-specific immunosuppression after MIC infusion is long-lasting and associated with a striking increase in regulatory B lymphocytes. Donor-derived MICs appear to be an immunoregulatory cell population that when administered to recipients before transplantation, may exert a beneficial effect on kidney transplants. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: MIC Cell Therapy for Individualized Immunosuppression in Living Donor Kidney Transplant Recipients (TOL-1), NCT02560220.


Subject(s)
B-Lymphocytes, Regulatory , Kidney Transplantation , Humans , Immunosuppressive Agents/therapeutic use , Immunosuppression Therapy , Immune Tolerance , Transplant Recipients
19.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338672

ABSTRACT

The search for target antigens for CAR-T cell therapy against multiple myeloma defined the B-cell maturation antigen (BCMA) as an interesting candidate. Several studies with BCMA-directed CAR-T cell therapy showed promising results. Second-generation point-of-care BCMA.CAR-T cells were manufactured to be of a GMP (good manufacturing practice) standard using the CliniMACS Prodigy® device. Cytokine release in BCMA.CAR-T cells after stimulation with BCMA positive versus negative myeloma cell lines, U266/HL60, was assessed via intracellular staining and flow cytometry. The short-term cytotoxic potency of CAR-T cells was evaluated by chromium-51 release, while the long-term potency used co-culture (3 days/round) at effector/target cell ratios of 1:1 and 1:4. To evaluate the activation and exhaustion of CAR-T cells, exhaustion markers were assessed via flow cytometry. Stability was tested through a comparison of these evaluations at different timepoints: d0 as well as d + 14, d + 90 and d + 365 of cryopreservation. As results, (1) Killing efficiency of U266 cells correlated with the dose of CAR-T cells in a classical 4 h chromium-release assay. There was no significant difference after cryopreservation on different timepoints. (2) In terms of endurance of BCMA.CAR-T cell function, BCMA.CAR-T cells kept their ability to kill all tumor cells over six rounds of co-culture. (3) BCMA.CAR-T cells released high amounts of cytokines upon stimulation with tumor cells. There was no significant difference in cytokine release after cryopreservation. According to the results, BCMA.CAR-T cells manufactured under GMP conditions exerted robust and specific killing of target tumor cells with a high release of cytokines. Even after 1 year of cryopreservation, cytotoxic functions were maintained at the same level. This gives clinicians sufficient time to adjust the timepoint of BCMA.CAR-T cell application to the patient's course of the underlying disease.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , B-Cell Maturation Antigen/metabolism , Point-of-Care Systems , Immunotherapy, Adoptive/methods , Multiple Myeloma/pathology , Cytokines/metabolism , T-Lymphocytes , Cryopreservation
20.
Int J Cancer ; 152(3): 340-347, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35962946

ABSTRACT

Hematologic malignancies are model diseases for understanding neoplastic transformation and serve as prototypes for developing effective therapies. Indeed, the concept of systemic cancer therapy originated in hematologic malignancies and has guided the development of chemotherapy, cellular therapies, immunotherapy and modern precision oncology. Despite significant advances in the treatment of leukemias, lymphomas and multiple myelomas, treatment resistance associated with molecular and clinical relapse remains very common. Therapy of relapsed and refractory disease remains extremely difficult, and failure of disease control at this stage remains the leading cause of mortality in patients with hematologic malignancies. In recent years, many efforts have been made to identify the genetic and epigenetic mechanisms that drive the development of hematologic malignancies to the stage of full-blown disease requiring clinical intervention. In contrast, the mechanisms responsible for treatment resistance in hematologic malignancies remain poorly understood. For example, the molecular characteristics of therapy-resistant persisting cells in minimal residual disease (MRD) remain rather elusive. In this mini-review we want to discuss that cellular heterogeneity and plasticity, together with adaptive genetic and epigenetic processes, lead to reduced sensitivity to various treatment regimens such as chemotherapy and pathway inhibitors such as tyrosine kinase inhibitors. However, resistance mechanisms may be conserved across biologically distinct cancer entities. Recent technological advances have made it possible to explore the underlying mechanisms of therapy resistance with unprecedented resolution and depth. These include novel multi-omics technologies with single cell resolution combined with advanced biocomputational approaches, along with artificial intelligence (AI) and sophisticated disease models for functional validation.


Subject(s)
Artificial Intelligence , Hematologic Neoplasms , Humans , Precision Medicine , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Immunotherapy , Neoplasm, Residual
SELECTION OF CITATIONS
SEARCH DETAIL