Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters

Affiliation country
Publication year range
1.
New Phytol ; 242(6): 2401-2410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494698

ABSTRACT

The rhizosphere microbiome plays critical roles in plant growth and provides promising solutions for sustainable agriculture. While the rhizosphere microbiome frequently fluctuates with the soil environment, recent studies have demonstrated that a small proportion of the microbiome is consistently assembled in the rhizosphere of a specific plant genotype regardless of the soil condition, which is determined by host genetics. Based on these breakthroughs, which involved exploiting the plant-beneficial function of the rhizosphere microbiome, we propose to divide the rhizosphere microbiome into environment-dominated and plant genetic-dominated components based on their different assembly mechanisms. Subsequently, two strategies to explore the different rhizosphere microbiome components for agricultural production are suggested, that is, the precise management of the environment-dominated rhizosphere microbiome by agronomic practices, and the elucidation of the plant genetic basis of the plant genetic-dominated rhizosphere microbiome for breeding microbiome-assisted crop varieties. We finally present the major challenges that need to be overcome to implement strategies for modulating these two components of the rhizosphere microbiome.


Subject(s)
Agriculture , Microbiota , Rhizosphere , Agriculture/methods , Crops, Agricultural/microbiology , Sustainable Development , Soil Microbiology
2.
J Environ Sci (China) ; 65: 92-102, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29548416

ABSTRACT

The methylene blue (MB) removal abilities of raw activated carbon and iron/cerium modified raw activated carbon (Fe-Ce-AC) by adsorption were researched and compared. The characteristics of Fe-Ce-AC were examined by N2 adsorption, zeta potential measurement, FTIR, Raman, XRD, XPS, SEM and EDS. After modification, the following phenomena occurred: The BET surface area, average pore diameter and total pore volume decreased; the degree of graphitization also decreased. Moreover, the presence of Fe3O4 led to Fe-Ce-AC having magnetic properties, which makes it easy to separate from dye wastewater in an external magnetic field and subsequently recycle. In addition, the equilibrium isotherms and kinetics of MB adsorption on raw activated carbon and Fe-Ce-AC were systematically examined. The equilibrium adsorption data indicated that the adsorption behavior followed the Langmuir isotherm, and the pseudo-second-order model matched the kinetic data well. Compared with raw activated carbon, the maximum monolayer adsorption capacity of Fe-Ce-AC increased by 27.31%. According to the experimental results, Fe-Ce-AC can be used as an effective adsorbent for the removal of MB from dye wastewater.


Subject(s)
Methylene Blue/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Adsorption , Cerium/chemistry , Charcoal/chemistry , Methylene Blue/analysis , Water Pollutants, Chemical/analysis
3.
Materials (Basel) ; 17(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38998357

ABSTRACT

Aiming at the problems of the large storage, complex composition, low comprehensive utilization rate, and high environmental impact of coal gangue, this paper carried out experimental research on the preparation of iron oxide red from high-iron gangue by calcination activation, acid leaching, extraction, and the hydrothermal synthesis of coal gangue. The experimental results show that when the calcination temperature of coal gangue is 500 °C, the calcination time is 1.5 h, the optimal concentration of iron removal is 6 mol/L, the acid leaching temperature is 80 °C, the acid leaching time is 1 h, and the liquid--solid mass ratio is 4:1; the iron dissolution rate can reach 87.64%. A solvent extraction method (TBP-SK-hydrochloric acid system) was used to extract the leachate, and a solution with iron content up to 99.21% was obtained. By controlling the optimum hydrothermal conditions (pH = 9, temperature 170 °C, reaction time 5 h), high-purity iron oxide red product can be prepared; the yield is 80.07%. The red iron oxide was characterized by XRD, SEM-EDS, particle-size analysis, and ICP-OES. The results show that the red iron oxide peak has a cubic microstructure, an average particle size of 167.16 µm, and a purity of 99.16%. The quality of the prepared iron oxide red product meets the requirement of 98.5% of the "YHT4 Iron oxide Standard for ferrite". It can be used as a raw material to produce high-performance soft magnetic ferrite. In summary, this experimental study on the preparation of iron oxide red from coal gangue is of great significance for the comprehensive utilization of coal gangue to realize the sustainable development of the environment and economy.

4.
RSC Adv ; 14(1): 266-277, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38173580

ABSTRACT

Steel hydrochloric acid pickling sludge (SHPS), containing the heavy metals Fe, Zn, and Ni and a high chloride salt content, is considered a hazardous solid waste. With the gradual reduction of high-grade metal mineral resources such as Fe, Zn and Ni, it is particularly urgent to recycle valuable metals such as Fe, Zn and Ni in solid waste SHPS in order to realize the resource utilization of SHPS and reduce the environmental harm caused by SHPS. In addition, SHPS usually contains different amounts of alkali chloride, which will have a serious adverse impact on the subsequent extraction and smelting process of Fe, Zn and other metals. Therefore, the removal of chloride plays an important role in the resource utilization of valuable metals in SHPS. Thus, in this study, the effects of water washing dechlorination process parameters such as liquid-solid (L/S) ratio, SHPS particle size, washing time and washing frequency on the chloride removal rate were investigated. The best experimental parameters of SHPS washing were obtained. At the same time, the microscopic morphology and crystal phase composition of SHPS before and after washing were explored. The results showed that the optimized conditions were as follows: room temperature, a L/S ratio of 3 : 1, an SHPS particle size of 100 mesh, and 10 min of water washing, repeated two or three times; under these conditions, the removal rate of Cl, Na, Ca, K, Mg, and S reached 96.64-99.68%, 97.38-99.89%, 36.40-60.37%, 49.11-54.82%, 39.18-40.22%, and 36.98-42.13% respectively. The contents of Cl, K, and Na in filter residue (FR) meets the requirements in GB/T 36144-2018 and GB/T 32545-2016. Conversely, the contents of Fe, Zn, Mn and Ni in the FR are enriched, which is more conducive to the subsequent resource utilization of SHPS. The scanning electron microscope (SEM) image shows the particle size of the FR particles is reduced after washing. The X-ray diffractometer (XRD) results proved that the chlorine salt content in the FR after washing was significantly reduced, the diffraction peaks of Al2O3 appeared in the FR, and the diffraction peak intensity of CaCO3, Fe2O3 and SiO2 increased.

5.
Materials (Basel) ; 16(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37512405

ABSTRACT

Metallurgical slag and dust (MSD) are abundant Zn-containing secondary resources that can partially alleviate the shortage of zinc minerals, with hazardous characteristics and a high recycling value. In this work, the process conditions of recycling Zn from MSD materials leaching by ammonium acetate (NH3-CH3COONH4-H2O) were optimised using response surface methodology (RSM). The influences of liquid/solid ratio, stirring speed, leaching time, total ammonia concentration, and the interactions between these variables on the Zn effective extraction rate during the ammonium acetate leaching process were investigated. Additionally, the predicted regression equation between the Zn effective extraction rate and the four affecting factors was established, and the optimal process parameters were determined with a stirring speed of 345 r/min, leaching temperature of 25 °C, [NH3]/[NH4]+ of 1:1, total ammonia concentration of 4.8 mol/L, liquid/solid ratio of 4.3:1, and leaching time of 46 min. The Zn effective extraction rates predicted by the proposed model and the measured values were 85.25% and 84.67%, respectively, with a relative error of 0.58% between the two values, indicating the accuracy and reliability of the proposed model. XRD and SEM-EDS analysis results showed that Zn2SiO4, ZnS, and ZnFe2O4 were among the main factors affecting the low extraction rate of zinc from metallurgical slag dust. This work established a new technology prototype for the effective and clean extraction of zinc resources, which can provide new routes to effectively utilise Zn-containing MSD materials and lay a foundation for developing other novel techniques for recycling Zn from Zn-containing secondary resources.

6.
Materials (Basel) ; 16(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570138

ABSTRACT

The discharge and accumulation of coal-based solid waste have caused great harm to the ecological environment recently. Coal-based solid wastes, such as coal gangue and fly ash, are rich in valuable components, such as rare earth elements (REY), silicon dioxide, alkali metal oxides, and transition metal oxides, which can be used to synthesize various functional Si-based porous materials. This article systematically summarizes the physicochemical characteristics and general processing methods of coal gangue and fly ash and reviews the progress in the application of porous materials prepared from these two solid wastes in the fields of energy and environmental protection, including the following: the adsorption treatment of heavy metal ions, ionic dyes, and organic pollutants in wastewater; the adsorption treatment of CO2, SO2, NOx, and volatile organic compounds in waste gas; the energy regeneration of existing resources, such as waste plastics, biomass, H2, and CO; and the preparation of Li-Si batteries. Combining the composition, structure, and action mechanism of various solid-waste-based porous materials, this article points out their strengths and weaknesses in the above applications. Furthermore, ideas for improvements in the applications, performance improvement methods, and energy consumption reduction processes of typical solid-waste-based porous materials are presented in this article. These works will deepen our understanding of the application of solid-waste-based porous materials in wastewater treatment, waste gas treatment, energy regeneration, and other aspects, as well as providing assistance for the integration of new technologies into solid-waste-based porous material preparation industries, and providing new ideas for reducing and reusing typical Chinese solid waste resources.

7.
Adv Sci (Weinh) ; 10(5): e2205215, 2023 02.
Article in English | MEDLINE | ID: mdl-36529951

ABSTRACT

Seed-borne pathogens can inhabit the rhizosphere and infect the plant after germination. The rhizosphere microbiome plays critical roles in defending against seed-borne pathogens. However, the assembly of a core rhizosphere microbiome to suppress seed-borne pathogens is unknown. Here, the root-associated microbiome is infested with seed-borne Fusarium in sterile environment, while the root-associated microbiome is not infested when it interacts with the native soil microbiome across maize cultivars, suggesting that a core rhizosphere microbiome assembles to suppress seed-borne Fusarium. Two strategies of progressive dilution and rhizodepositional attraction are applied to identify the core rhizobacteria. A synthetic microbiota (SynM) is constructed using the isolates of the core rhizobacteria and optimized according to superior community stability and Fusarium-suppression capability, which surpasses the single strain and randomly formed microbiota. The optimized SynM (OptSynM) presents a distinctive cooperative pattern in which a key strain harbors the Fusarium suppression function by synthesizing the antagonistic substance fengycin, while other members intensify the functional performance by promoting the growth and the expression of the antagonistic and plant-growth-promoting related genes of the key strain. This study demonstrates innovative approaches to construct stable and minimal microbiota for sustainable agriculture and proposes a unique cooperative pattern to sustain community stability and functionality.


Subject(s)
Bacillus , Fusarium , Microbiota , Fusarium/physiology , Bacillus/metabolism , Zea mays/microbiology , Plant Roots/microbiology , Microbiota/physiology , Seeds
8.
Materials (Basel) ; 15(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36079349

ABSTRACT

As an important secondary zinc resource, large-scale reserves of zinc oxide dust (ZOD) from a wide range of sources is of high comprehensive recycling value. Therefore, an experimental study on ultrasound-enhanced sulfuric acid leaching for zinc extraction from zinc oxide dust was carried out to investigate the effects of various factors such as ultrasonic power, reaction time, sulfuric acid concentration, and liquid-solid ratio on zinc leaching rate. The results show that the zinc leaching rate under ultrasound reached 91.16% at a temperature of 25 °C, ultrasonic power 500 W, sulfuric acid concentration 140 g/L, liquid-solid ratio 5:1, rotating speed 100 r/min, and leaching time 30 min. Compared with the conventional leaching method (leaching rate: 85.36%), the method under ultrasound increased the zinc leaching rate by 5.8%. In a kinetic analysis of the ultrasound-enhanced sulfuric acid leaching of zinc oxide dust, the initial apparent activation energy of the reaction was 6.90 kJ/mol, indicating that the ultrasound-enhanced leaching process was controlled by the mixed solid product layers. Furthermore, the leached residue was characterized by XRD and SEM-EDS, and the results show that, with ultrasonic waves, the encapsulated mineral particles were dissociated, and the dissolution of ZnO was enhanced. Mostly, the zinc in leached residue existed in the forms of ZnFe2O4, Zn2SiO4, and ZnS.

9.
Materials (Basel) ; 15(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35160657

ABSTRACT

An activate pretreatment of zinc-containing metallurgical residues were proposed by adding CaO and introducing microwave heating approach into the CaO activation pretreatment process to realize the conversion of refractory ore phases into pre-treated ore phase. Thermodynamic characteristics analysis indicated that adding CaO can realize the conversion of refractory ore phases, with the same effect as the carbon additives. Thermal conductivity properties analysis denoted that the thermal conductivity properties of ZnS and ZnFe2O4 were relatively poor. Meanwhile, the thermal conductivity properties of the residues sample added with 25% CaO were significantly superior to the residues added with other CaO contents, with the maximum specific heat value of 1.348 J/g·K at 350 °C. Dielectric properties analysis highlighted that adding CaO with the dielectric constant properties significantly higher than that of other substances can enhance the microwave absorption capacity of zinc-containing residues. The decrease in dielectric loss and loss tangent value with the increase of temperature and the residues having large microwave penetration depth guaranteed to obtain better uniformity of microwave heating. Furthermore, adding 25% CaO promoted the microwave penetration depth of the residues sample increased in the range of 300-500 °C. This work can lay a theoretical research foundation for solving the key difficulty for efficient Zn recovery from complex zinc-containing metallurgical residues.

10.
R Soc Open Sci ; 5(7): 180660, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30109111

ABSTRACT

Metallurgical slag and dust (MSD) from lead and zinc smelting, steel dust and galvanized steel scrap are important secondary sources of zinc and other valuable metals. This paper describes the production feasibility and rationality of a cleaner zinc recovery process using MSD and a hydrometallurgical method. It was found that the addition of CH3COONH4 to a NH3-H2O system promotes zinc extraction, and 83.76% of zinc could be dissolved and recovered from the MSD under the following conditions: total ammonia concentration of 5 mol l-1, stirring speed of 300 r.p.m., ammonia/ammonium ratio of 1 : 1, solid/liquid ratio of 1 : 5, leaching temperature of 25°C and a leaching time of 60 min. A leaching kinetic study indicates that the leaching process is controlled by the diffusion and interface transfer and that the reaction apparent activation energy is 22.66 kJ mol-1. Fourier transform infrared spectroscopy and electrospray ionization mass spectrometry analysis showed that zinc can combine with the carboxylate anion to form Zn complexes such as [Zn2(Ac)3(NH3)2]+. Zn2SiO4, ZnS and ZnFe2O4 in NH3-CH3COONH4-H2O system did not disappear according to X-ray diffraction analysis for leaching residue.

11.
J Hazard Mater ; 343: 315-323, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-28988057

ABSTRACT

In this article, the role of MnO2 in the recovery of oxide-sulphide zinc ore discussed. Through adopting various modern analysis techniques (such as X-ray diffraction pattern, X-ray photoelectron spectroscopy, scanning electron microscope, energy dispersive X-ray analysis, and fourier transform infrared spectroscopy), the function and mechanism of MnO2 during the phase transformation process is found out. Thermodynamic mechanisms involved in the phase transformation process with or without addition of manganese dioxide investigated by exploiting the Equilib module of FactSage. What's more, XRD patterns, XPS spectra and SEM-EDAX analyses of zinc calcines verify well the calculations of FactSage. Results reveal that the addition of MnO2 will produce an aggregation of ZnMn2O4, a valuable energy material, while roasting on its own, results in generating undesirable Zn2SiO4, the oxidation degree being relatively low. Moreover, XRD pattern of zinc calcine and FT-IR spectrum of yellow product collected in the calcination process prove that the sulphur-fixing value of the additive MnO2, which can promote transforming to the elemental sulphur. The volatile S can be collected through a simple guiding device. In this process, the emission of SO2 effectively avoids, thus MnO2 deems as a potential additive in the recovery of oxide-sulphide zinc ore.

12.
J Hazard Mater ; 322(Pt B): 325-333, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27776854

ABSTRACT

Kinetics of the thermal desorption of mercury from spent mercury chloride catalysts were investigated using non-isothermal thermal analysis technique. Complex mercury species absorbed on waste catalysts were revealed by sequential extraction procedure. A scheme of six reactions was applied to elucidate mercury desorption kinetics. Activation energy estimated by model-free isoconversional methods is a slightly increasing function of conversion, implying a variation in the mechanism controlling mercury desorption. Average value of apparent activation energy (116.32kJ/mol) calculated by isoconversional Starink method was used to determine reaction mechanism using model-fitting and z(α) master method. One dimensional diffusion appears to govern mercury desorption process in the conversion range of 10%-40%, and then the reaction kinetic is controlled by two and three dimensional diffusion at greater conversion.

SELECTION OF CITATIONS
SEARCH DETAIL