Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Plant Cell ; 36(3): 585-604, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38019898

ABSTRACT

Auxin plays important roles throughout plant growth and development. However, the mechanisms of auxin regulation of plant structure are poorly understood. In this study, we identified a transcription factor (TF) of the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family in apple (Malus × domestica), MdBPC2. It was highly expressed in dwarfing rootstocks, and it negatively regulated auxin biosynthesis. Overexpression of MdBPC2 in apple decreased plant height, altered leaf morphology, and inhibited root system development. These phenotypes were due to reduced auxin levels and were restored reversed after exogenous indole acetic acid (IAA) treatment. Silencing of MdBPC2 alone had no obvious phenotypic effect, while silencing both Class I and Class II BPCs in apple significantly increased auxin content in plants. Biochemical analysis demonstrated that MdBPC2 directly bound to the GAGA-rich element in the promoters of the auxin synthesis genes MdYUC2a and MdYUC6b, inhibiting their transcription and reducing auxin accumulation in MdBPC2 overexpression lines. Further studies established that MdBPC2 interacted with the polycomb group (PcG) protein LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) to inhibit MdYUC2a and MdYUC6b expression via methylation of histone 3 lysine 27 (H3K27me3). Silencing MdLHP1 reversed the negative effect of MdBPC2 on auxin accumulation. Our results reveal a dwarfing mechanism in perennial woody plants involving control of auxin biosynthesis by a BPC transcription factor, suggesting its use for genetic improvement of apple rootstock.


Subject(s)
Malus , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Malus/genetics , Malus/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism
2.
Plant J ; 118(3): 787-801, 2024 May.
Article in English | MEDLINE | ID: mdl-38206080

ABSTRACT

Soluble sugar content is a key component in controlling fruit flavor, and its accumulation in fruit is largely determined by sugar metabolism and transportation. When the diurnal temperature range is greater, the fleshy fruits accumulated more soluble sugars and become more sweeter. However, the molecular mechanism underlying this response remains largely unknown. In this study, we verified that low-temperature treatment promoted soluble sugar accumulation in apple fruit and found that this was due to the upregulation of the Tonoplast Sugar Transporter genes MdTST1/2. A combined strategy using assay for transposase-accessible chromatin (ATAC) sequencing and gene expression and cis-acting elements analyses, we identified two C-repeat Binding Factors, MdCBF1 and MdCBF2, that were induced by low temperature and that might be upstream transcription factors of MdTST1/2. Further studies established that MdCBF1/2 could bind to the promoters of MdTST1/2 and activate their expression. Overexpression of MdCBF1 or MdCBF2 in apple calli and fruit significantly upregulated MdTST1/2 expression and increased the concentrations of glucose, fructose, and sucrose. Suppression of MdTST1 and/or MdTST2 in an MdCBF1/2-overexpression background abolished the positive effect of MdCBF1/2 on sugar accumulation. In addition, simultaneous silencing of MdCBF1/2 downregulated MdTST1/2 expression and apple fruits failed to accumulate more sugars under low-temperature conditions, indicating that MdCBF1/2-mediated sugar accumulation was dependent on MdTST1/2 expression. Hence, we concluded that the MdCBF1/2-MdTST1/2 module is crucial for sugar accumulation in apples in response to low temperatures. Our findings provide mechanistic components coordinating the relationship between low temperature and sugar accumulation as well as new avenues to improve fruit quality.


Subject(s)
Cold Temperature , Fruit , Gene Expression Regulation, Plant , Malus , Plant Proteins , Malus/genetics , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/metabolism , Sugars/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified , Carbohydrate Metabolism/genetics
3.
Plant Physiol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728429

ABSTRACT

In fleshy fruit, sugars and acids are central components of fruit flavor and quality. To date, the mechanisms underlying transcriptional regulation of sugar and acid during fruit development remain largely unknown. Here, we combined ATAC-seq with RNA-seq to investigate the genome-wide chromatin accessibility and to identify putative transcription factors related to sugar and acid accumulation during apple (Malus domestica) fruit development. By integrating the differentially accessible regions (DARs) and differentially expressed genes (DEGs), we generated a global dataset of promoter-accessibility- and expression-increased genes (PEIGs). Using this strategy, we constructed a transcriptional regulatory network enabling screening for key transcription factors and target genes involved in sugar and acid accumulation. Among these transcription factors, five fruit-specific Dof (DNA binding with one finger) genes were selected to confirm their regulatory effects, and our results showed that they could affect sugar or acid concentration by regulating the expression of sugar or acid metabolism-related genes in apple fruits. Our transcriptional regulatory network provides a suitable platform to identify candidate genes that control sugar and acid accumulation. Meanwhile, our dataset will aid in analyzing other characteristics of apple fruit that have not been illuminated previously. Overall, these findings support a better understanding of the regulatory dynamics during apple fruit development and lay a foundation for quality improvement of apple.

4.
Plant Physiol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788771

ABSTRACT

Malic acid is an important flavor determinant in apple (Malus domestica Borkh.) fruit. One known variation controlling malic acid is the A/G SNP in an aluminium-activated malate transporter gene (MdMa1). Nevertheless, there are still differences in malic acid content in apple varieties with the same Ma1 genotype (Ma1/Ma1 homozygous), such as 'Honeycrisp' (high malic acid content) and 'Qinguan' (low malic acid content), indicating that other loci may influence malic acid and fruit acidity. Here, the F1 hybrid generation of 'Honeycrisp' × 'Qinguan' was used to analyze quantitative trait loci (QTLs) for malic acid content. A major locus (Ma7) was identified on chromosome 13. Within this locus, a malate dehydrogenase gene, MDH1 (MdMa7), was the best candidate for further study. Subcellular localization suggested that MdMa7 encodes a cytosolic protein. Overexpression and RNAi of MdMa7 in apple fruit increased and decreased malic acid content, respectively. An insertion / deletion (indel) in the MdMa7 promoter was found to affect MdMa7 expression and malic acid content in both hybrids and other cultivated varieties. The insertion and deletion genotypes were designated as MA7 and ma7, respectively. The transcription factor MdbHLH74 was found to stimulate MdMa7 expression in the MA7 genotype but not in the ma7 genotype. Transient transformation of fruit showed that MdbHLH74 affected MdMa7 expression and malic acid content in 'Gala' (MA7/MA7) but not in 'Fuji' (ma7/ma7). Our results indicated that genetic variation in the MdMa7 (MDH1) promoter alters the binding ability of the transcription factor MdbHLH74, which alters MdMa7 (MDH1) transcription and the malic acid content in apple fruit, especially in Ma1/Ma1 homozygous accessions.

5.
Plant Physiol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758108

ABSTRACT

Acidity is a key factor controlling fruit flavor and quality. In a previous study, combined transcriptome and methylation analyses identified a P3A-type ATPase from apple (Malus domestica), MdMa11, which regulates vacuolar pH when expressed in Nicotiana benthamiana leaves. In this study, the role of MdMa11 in controlling fruit acidity was verified in apple calli, fruits, and plantlets. In addition, we isolated an AP2 domain-containing transcription factor, designated MdESE3, based on yeast one-hybrid (Y1H) screening using the MdMa11 promoter as bait. A subcellular localization assay indicated that MdESE3 localized to the nucleus. Analyses of transgenic apple calli, fruits, and plantlets, as well as tomatoes, demonstrated that MdESE3 enhances fruit acidity and organic acid accumulation. Meanwhile, chromatin immunoprecipitation quantitative PCR (ChIP-qPCR), luciferase (LUC) transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the ethylene-responsive element (ERE; 5'-TTTAAAAT-3') upstream of the MdMa11 transcription start site, thereby activating its expression. Furthermore, MdtDT, MdDTC2, and MdMDH12 expression increased in apple fruits and plantlets overexpressing MdESE3 and decreased in apple fruits and plantlets where MdESE3 was silenced. The ERE was found in MdtDT and MdMDH12 promoters, but not in the MdDTC2 promoter. The Y1H, LUC transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the MdtDT and MdMDH12 promoters and activate their expression. Our findings provide valuable functional validation of MdESE3 and its role in the transcriptional regulation of MdMa11, MdtDT, and MdMDH12 and malic acid accumulation in apple.

6.
Plant Physiol ; 195(1): 395-409, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38198215

ABSTRACT

Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Pyrus , Transcription Factors , Xylem , Xylem/metabolism , Xylem/genetics , Pyrus/genetics , Pyrus/metabolism , Pyrus/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Promoter Regions, Genetic/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics
7.
Plant J ; 115(5): 1231-1242, 2023 09.
Article in English | MEDLINE | ID: mdl-37219375

ABSTRACT

Malic acid is a major organic acid component of apples and a crucial determinant of fruit organoleptic quality. A candidate gene for malic acid content, designated MdMa1, was previously identified in the Ma locus, which is a major quantitative trait locus (QTL) for apple fruit acidity located on the linkage group 16. Region-based association mapping to detect candidate genes in the Ma locus identified MdMa1 and an additional MdMYB21 gene putatively associated with malic acid. MdMYB21 was significantly associated with fruit malic acid content, accounting for ~7.48% of the observed phenotypic variation in the apple germplasm collection. Analyses of transgenic apple calli, fruits and tomatoes demonstrated that MdMYB21 negatively regulated malic acid accumulation. The apple fruit acidity-related MdMa1 and its tomato ortholog, SlALMT9, exhibited lower expression profiles in apple calli, mature fruits and tomatoes in which MdMYB21 was overexpressed, compared with their corresponding wild-type variety. MdMYB21 directly binds to the MdMa1 promoter and represses its expression. Interestingly, a 2-bp variation in the MdMYB21 promoter region altered its expression and regulation of its target gene, MdMa1, expression. Our findings not only demonstrate the efficiency of integrating QTL and association mapping in the identification of candidate genes controlling complex traits in apples, but also provide insights into the complex regulatory mechanism of fruit malic acid accumulation.


Subject(s)
Malus , Malus/genetics , Malus/metabolism , Fruit/genetics , Fruit/metabolism , Malates/metabolism , Quantitative Trait Loci/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Plant Biotechnol J ; 22(6): 1566-1581, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38205680

ABSTRACT

In plants under drought stress, sugar content in roots increases, which is important for drought resistance. However, the molecular mechanisms for controlling the sugar content in roots during response to drought remain elusive. Here, we found that the MdDOF3-MdHT1.2 module-mediated glucose influx into the root is essential for drought resistance in apple (Malus × domestica). Drought induced glucose uptake from the rhizosphere and up-regulated the transcription of hexose transporter MdHT1.2. Compared with the wild-type plants, overexpression of MdHT1.2 promoted glucose uptake from the rhizosphere, thereby facilitating sugar accumulation in root and enhancing drought resistance, whereas silenced plants showed the opposite phenotype. Furthermore, ATAC-seq, RNA-seq and biochemical analysis demonstrated that MdDOF3 directly bound to the promoter of MdHT1.2 and was strongly up-regulated under drought. Overexpression of MdDOF3 in roots improved MdHT1.2-mediated glucose transport capacity and enhanced plant resistance to drought, but MdDOF3-RNAihr apple plants showed the opposite phenotype. Moreover, overexpression of MdDOF3 in roots did not attenuate drought sensitivity in MdHT1.2-RNAi plants, which was correlated with a lower glucose uptake capacity and glucose content in root. Collectively, our findings deciphered the molecular mechanism through which glucose uptake from the rhizosphere is mediated by MdDOF3-MdHT1.2, which acts to modulate sugar content in root and promote drought resistance.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Glucose , Malus , Plant Proteins , Plants, Genetically Modified , Rhizosphere , Malus/genetics , Malus/metabolism , Glucose/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/genetics , Monosaccharide Transport Proteins/metabolism , Monosaccharide Transport Proteins/genetics , Drought Resistance
9.
Plant Physiol ; 191(2): 1052-1065, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36461944

ABSTRACT

Fructokinase (FRK) activates fructose through phosphorylation, which sends the activated fructose into primary metabolism and regulates fructose signaling capabilities in plants. The apple (Malus × domestica) FRK gene MdFRK2 shows especially high affinity to fructose, and its overexpression decreases fructose levels in the leaves of young plants. However, in the current study of mature plants, fruits of transgenic apple trees overexpressing MdFRK2 accumulated a higher level of fructose than wild-type (WT) fruits (at both young and mature stages). Transgenic apple trees with high mRNA MdFRK2 expression showed no significant differences in MdFRK2 protein abundance or FRK enzyme activity compared to WT in mature leaves, young fruits, and mature fruits. Immunoprecipitation-mass spectrometry analysis identified an skp1, cullin, F-box (SCF) E3 ubiquitin ligase, calcyclin-binding protein (CacyBP), that interacted with MdFRK2. RNA-sequencing analysis provided evidence for ubiquitin-mediated post-transcriptional regulation of MdFRK2 protein for the maintenance of fructose homeostasis in mature leaves and fruits. Further analyses suggested an MdCacyBP-MdFRK2 regulatory module, in which MdCacyBP interacts with and ubiquitinates MdFRK2 to facilitate its degradation by the 26S proteasome, thus decreasing the FRK enzyme activity to elevate fructose concentration in transgenic apple trees. This result uncovered an important mechanism underlying plant fructose homeostasis in different organs through regulating the MdFRK2 protein level via ubiquitination and degradation. Our study provides usable data for the future improvement of apple flavor and expands our understanding of the molecular mechanisms underlying plant fructose content and signaling regulation.


Subject(s)
Malus , Malus/metabolism , S100 Calcium Binding Protein A6/genetics , S100 Calcium Binding Protein A6/metabolism , Homeostasis , Fructose , Sugars/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism
10.
Plant Physiol ; 192(3): 1877-1891, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36810940

ABSTRACT

Acidity is a key determinant of fruit organoleptic quality. Here, a candidate gene for fruit acidity, designated MdMYB123, was identified from a comparative transcriptome study of two Ma1Ma1 apple (Malus domestica) varieties, "Qinguan (QG)" and "Honeycrisp (HC)" with different malic acid content. Sequence analysis identified an A→T SNP, which was located in the last exon, resulting in a truncating mutation, designated mdmyb123. This SNP was significantly associated with fruit malic acid content, accounting for 9.5% of the observed phenotypic variation in apple germplasm. Differential MdMYB123- and mdmyb123-mediated regulation of malic acid accumulation was observed in transgenic apple calli, fruits, and plantlets. Two genes, MdMa1 and MdMa11, were up- and down-regulated in transgenic apple plantlets overexpressing MdMYB123 and mdmyb123, respectively. MdMYB123 could directly bind to the promoter of MdMa1 and MdMa11, and induce their expression. In contrast, mdmyb123 could directly bind to the promoters of MdMa1 and MdMa11, but with no transcriptional activation of both genes. In addition, gene expression analysis in 20 different apple genotypes based on SNP locus from "QG" × "HC" hybrid population confirmed a correlation between A/T SNP with expression levels of MdMa1 and MdMa11. Our finding provides valuable functional validation of MdMYB123 and its role in the transcriptional regulation of both MdMa1 and MdMa11, and apple fruit malic acid accumulation.


Subject(s)
Malus , Malus/genetics , Malus/metabolism , Fruit/genetics , Fruit/metabolism , Malates/metabolism , Genotype , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Plant Physiol ; 193(1): 410-425, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37061824

ABSTRACT

Plant roots can absorb sugars from the rhizosphere, which reduces the consumption of carbon derived from photosynthesis. However, the underlying mechanisms that roots use to control sugar absorption from soil are poorly understood. Here, we identified an apple (Malus × domestica Borkh.) hexose transporter, MdHT1.2, that functions on the root epidermis to absorb glucose (Glc) from the rhizosphere. Based on RNA-seq data, MdHT1.2 showed the highest expression level among 29 MdHT genes in apple roots. Biochemical analyses demonstrated that MdHT1.2 was mainly expressed in the epidermal cells of fine roots, and its protein was located on the plasma membrane. The roots of transgenic apple and Solanum lycopersicum lines overexpressing MdHT1.2 had an increased capability to absorb Glc when fed with [13C]-labeled Glc or 2-NBDG, whereas silencing MdHT1.2 in apple showed the opposite results. Further studies established that MdHT1.2-mediated Glc absorption from the rhizosphere changed the carbon assimilate allocation between apple shoot and root, which regulated plant growth. Additionally, a grafting experiment in tomato confirmed that increasing the Glc uptake capacity in the root overexpressing MdHT1.2 could facilitate carbohydrate partitioning to the fruit. Collectively, our study demonstrated that MdHT1.2 functions on the root epidermis to absorb rhizospheric Glc, which regulates the carbohydrate allocation for plant growth and fruit sugar accumulation.


Subject(s)
Malus , Malus/metabolism , Glucose/metabolism , Rhizosphere , Sugars/metabolism , Carbon/metabolism , Plant Roots/metabolism
12.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443220

ABSTRACT

Sugar transport across tonoplasts is essential for maintaining cellular sugar homeostasis and metabolic balance in plant cells. It remains unclear, however, how this process is regulated among different classes of sugar transporters. Here, we identified a tonoplast H+/glucose symporter, MdERDL6-1, from apples, which was highly expressed in fruits and exhibited expression patterns similar to those of the tonoplast H+/sugar antiporters MdTST1 and MdTST2. Overexpression of MdERDL6-1 unexpectedly increased not only glucose (Glc) concentration but also that of fructose (Fru) and sucrose (Suc) in transgenic apple and tomato leaves and fruits. RNA sequencing (RNA-seq) and expression analyses showed an up-regulation of TST1 and TST2 in the transgenic apple and tomato lines overexpressing MdERDL6-1 Further studies established that the increased sugar concentration in the transgenic lines correlated with up-regulation of TST1 and TST2 expression. Suppression or knockout of SlTST1 and SlTST2 in the MdERDL6-1-overexpressed tomato background reduced or abolished the positive effect of MdERDL6-1 on sugar accumulation, respectively. The findings demonstrate a regulation of TST1 and TST2 by MdERDL6-1, in which Glc exported by MdERDL6-1 from vacuole up-regulates TST1 and TST2 to import sugars from cytosol to vacuole for accumulation to high concentrations. The results provide insight into the regulatory mechanism of sugar accumulation in vacuoles mediated by the coordinated action of two classes of tonoplast sugar transporters.


Subject(s)
Gene Expression Regulation, Plant/genetics , Malus/metabolism , Monosaccharide Transport Proteins/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Vacuoles/metabolism , Cytosol/metabolism , Fructose/metabolism , Fruit/metabolism , Gene Knockout Techniques , Gene Silencing , Glucose/metabolism , Solanum lycopersicum/genetics , Malus/genetics , Monosaccharide Transport Proteins/genetics , Phylogeny , Plant Leaves/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic , RNA-Seq , Sucrose/metabolism , Up-Regulation
13.
Plant J ; 109(5): 1183-1198, 2022 03.
Article in English | MEDLINE | ID: mdl-34888978

ABSTRACT

Fructose (Fru) content is a key determinant of fruit sweetness and quality. An F1 hybrid population of the apple cultivars 'Honeycrisp' × 'Qinguan' was used to investigate the quantitative trait locus (QTL) regions and genes controlling Fru content in fruit. A stable QTL on linkage group (LG) 01 in 'Honeycrisp' was detected on the single nucleotide polymorphism (SNP) genetic linkage maps. In this region, a sorbitol dehydrogenase (SDH) gene, MdSDH2, was detected and showed promoter variations and differential expression patterns between 'Honeycrisp' and 'Qinguan' fruits as well as their hybrids. A SNP variant (A/G) in the MdSDH2 promoter region (SDH2p-491) affected the binding ability of the transcription factor MdABI3, which can affect the expression of MdSDH2. Promoter sequences with an A nucleotide at SDH2p-491 had stronger binding affinity for MdABI3 than those with a G. Among 27 domesticated apple cultivars and wild relatives, this SNP (A/G) was associated with Fru content. Our results indicate that MdSDH2 can alter Fru content as the major regulatory gene and that ABA signaling might be involved in Fru content accumulation in apple fruit.


Subject(s)
Malus , Fructose/metabolism , Fruit/metabolism , L-Iditol 2-Dehydrogenase/genetics , Malus/genetics , Malus/metabolism , Promoter Regions, Genetic/genetics , Sorbitol/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Plant Physiol ; 188(1): 653-669, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35051284

ABSTRACT

Ascorbate (Asc) is an important antioxidant in plants and humans that plays key roles in various physiological processes. Understanding the regulation of Asc content in fruit plants is important for improving plant resiliency and optimizing Asc in food. Here, we found that both the transcript level and protein abundance of Asc Mannose pathway Regulator 1 Like 1 (MdAMR1L1) was negatively associated with Asc levels during the development of apple (Malus × domestica) fruit. The overexpression or silencing of MdAMR1L1 in apple indicated that MdAMR1L1 negatively regulated Asc levels. However, in the leaves of MdAMR1L1-overexpressing apple lines, the transcript levels of the Asc synthesis gene Guanosine diphosphate-mannose pyrophosphorylase MdGMP1 were increased, while its protein levels and enzyme activity were reduced. This occurred because the MdAMR1L1 protein interacted with MdGMP1 and promoted its degradation via the ubiquitination pathway to inhibit Asc synthesis at the post-translational level. MdERF98, an apple ethylene response factor, whose transcription was modulated by Asc level, is directly bound to the promoter of MdGMP1 to promote the transcription of MdGMP1. These findings provide insights into the regulatory mechanism of Asc biosynthesis in apples and revealed potential opportunities to improve fruit Asc levels.


Subject(s)
Ascorbic Acid/biosynthesis , Ascorbic Acid/genetics , F-Box Proteins/genetics , F-Box Proteins/metabolism , Malus/genetics , Malus/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Cells, Cultured , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype
15.
Plant Physiol ; 188(4): 2059-2072, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35078249

ABSTRACT

The content of organic acids greatly influences the taste and storage life of fleshy fruit. Our current understanding of the molecular mechanism of organic acid accumulation in apple (Malus domestica) fruit focuses on the aluminum-activated malate transporter 9/Ma1 gene. In this study, we identified a candidate gene, MdWRKY126, for controlling fruit acidity independent of Ma1 using homozygous recessive mutants of Ma1, namely Belle de Boskoop "BSKP" and Aifeng "AF." Analyses of transgenic apple calli and flesh and tomato (Solanum lycopersicum) fruit demonstrated that MdWRKY126 was substantially associated with malate content. MdWRKY126 was directly bound to the promoter of the cytoplasmic NAD-dependent malate dehydrogenase MdMDH5 and promoted its expression, thereby enhancing the malate content of apple fruit. In MdWRKY126 overexpressing calli, the mRNA levels of malate-associated transporters and proton pump genes also significantly increased, which contributed to the transport of malate accumulated in the cytoplasm to the vacuole. These findings demonstrated that MdWRKY126 regulates malate anabolism in the cytoplasm and coordinates the transport between cytoplasm and vacuole to regulate malate accumulation. Our study provides useful information to improve our understanding of the complex mechanism regulating apple fruit acidity.


Subject(s)
Malus , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Malates/metabolism , Malus/genetics , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Plant Biotechnol J ; 18(2): 540-552, 2020 02.
Article in English | MEDLINE | ID: mdl-31350935

ABSTRACT

Sugar transporters are necessary to transfer hexose from cell wall spaces into parenchyma cells to boost hexose accumulation to high concentrations in fruit. Here, we have identified an apple hexose transporter (HTs), MdHT2.2, located in the plasma membrane, which is highly expressed in mature fruit. In a yeast system, the MdHT2.2 protein exhibited high 14 C-fructose and 14 C-glucose transport activity. In transgenic tomato heterologously expressing MdHT2.2, the levels of both fructose and glucose increased significantly in mature fruit, with sugar being unloaded via the apoplastic pathway, but the level of sucrose decreased significantly. Analysis of enzyme activity and the expression of genes related to sugar metabolism and transport revealed greatly up-regulated expression of SlLIN5, a key gene encoding cell wall invertase (CWINV), as well as increased CWINV activity in tomatoes transformed with MdHT2.2. Moreover, the levels of fructose, glucose and sucrose recovered nearly to those of the wild type in the sllin5-edited mutant of the MdHT2.2-expressing lines. However, the overexpression of MdHT2.2 decreased hexose levels and increased sucrose levels in mature leaves and young fruit, suggesting that the response pathway for the apoplastic hexose signal differs among tomato tissues. The present study identifies a new HTs in apple that is able to take up fructose and glucose into cells and confirms that the apoplastic hexose levels regulated by HT controls CWINV activity to alter carbohydrate partitioning and sugar content.


Subject(s)
Fruit , Malus , Plant Proteins , Solanum lycopersicum , Cell Wall/enzymology , Fruit/chemistry , Fruit/genetics , Solanum lycopersicum/chemistry , Solanum lycopersicum/genetics , Malus/genetics , Monosaccharide Transport Proteins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Sugars/metabolism , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/metabolism
17.
Plant Biotechnol J ; 17(3): 674-686, 2019 03.
Article in English | MEDLINE | ID: mdl-30183123

ABSTRACT

Acidity is one of the main determinants of fruit organoleptic quality. Here, comparative transcriptome analysis was conducted between two cultivars that showed a significant difference in fruit acidity, but contained homozygous non-functional alleles at the major gene Ma1 locus controlling apple fruit acidity. A candidate gene for fruit acidity, designated M10, was identified. The M10 gene encodes a P-type proton pump, P3A -ATPase, which facilitates malate uptake into the vacuole. The Ma10 gene is significantly associated with fruit malate content, accounting for ~7.5% of the observed phenotypic variation in apple germplasm. Subcellular localization assay showed that the Ma10 is targeted to the tonoplast. Overexpression of the Ma10 gene can complement the defect in proton transport of the mutant YAK2 yeast strain and enhance the accumulation of malic acid in apple callus. Moreover, its ectopic expression in tomato induces a decrease in fruit pH. These results suggest that the Ma10 gene has the capacity for proton pumping and plays an important role in fruit vacuolar acidification in apple. Our study provides useful knowledge towards comprehensive understanding of the complex mechanism regulating apple fruit acidity.


Subject(s)
Fruit/metabolism , Genes, Plant/genetics , Malus/genetics , Plant Proteins/genetics , Proton-Translocating ATPases/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Genome, Plant/genetics , Malates/metabolism , Malus/metabolism , Plant Proteins/metabolism , Proton-Translocating ATPases/metabolism
18.
Int J Mol Sci ; 19(9)2018 Sep 18.
Article in English | MEDLINE | ID: mdl-30231490

ABSTRACT

Aluminum-activated malate transporters (ALMTs) play an important role in aluminum tolerance, stomatal opening, and fruit acidity in plants. However, the evolutionary pattern of the ALMT gene family in apples remains relatively unknown. In this study, a total of 25 MdALMT genes were identified from the apple reference genome of the "Golden Delicious" doubled-haploid tree (GDDH13). The physiological and biochemical properties, gene structure, and conserved motifs of MdALMT genes were examined. Chromosome location and gene-duplication analysis indicated that whole-genome duplication/segmental duplication played an important role in the expansion of the MdALMT gene family. The Ka/Ks ratio of duplicated MdALMT genes showed that members of this family have undergone strong purifying selection. Through exploration of the phylogenetic relationships, seven subgroups were classified, and higher old gene duplication frequency and significantly different evolutionary rates of the ALMT gene families were detected. In addition, the functional divergence of ALMT genes occurred during the evolutionary process of Rosaceae species. Furthermore, the functional divergence of MdALMT genes was confirmed by expression discrepancy and different subcellular localizations. This study provides the foundation to better understand the molecular evolution of MdALMT genes and further facilitate functional analysis to unravel their exact role in apples.


Subject(s)
Aluminum/metabolism , Evolution, Molecular , Malates/metabolism , Malus/genetics , Organic Anion Transporters/genetics , Phylogeny , Plant Proteins/genetics , Gene Duplication , Gene Expression Regulation, Plant , Genome, Plant , Malus/metabolism , Organic Anion Transporters/analysis , Organic Anion Transporters/metabolism , Plant Proteins/analysis , Plant Proteins/metabolism
19.
Int J Mol Sci ; 19(11)2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30356028

ABSTRACT

Malate dehydrogenase plays crucial roles in energy homeostasis, plant development and cold and salt tolerance, as it mediates the reversible conversion of malate to oxaloacetate. However, the evolutionary pattern of MDH genes in apple remains elusive. In this study, a total of 20 MDH genes were identified from the "Golden Delicious" apple draft genome. We revealed the physiological and biochemical properties, gene structure, and conserved motifs of MdMDH genes. Chromosomal localization and Ka/Ks ratio analysis of MdMDH genes revealed different selective pressures acted on duplicated MdMDH genes. Exploration of the phylogenetic relationships revealed six clades and similar frequencies between old and recent duplications, and significant differences in the evolutionary rates of the MDH gene family were observed. One MdMDH gene, MDP0000807458, which was highly expressed during apple fruit development and flower bud differentiation, was under positive selection. Thus, we speculated that MDP0000807458 is a likely candidate gene involved in regulation of flower bud differentiation and organic acid metabolism in apple fruits. This study provides a foundation for improved understanding of the molecular evolution of MdMDH genes and further facilitates the functional analysis of MDP0000807458 to unravel its exact role in flower bud differentiation and organic acid metabolism.


Subject(s)
Evolution, Molecular , Malate Dehydrogenase/genetics , Malus/genetics , Plant Proteins/genetics , Genome, Plant , Malate Dehydrogenase/metabolism , Malus/classification , Malus/enzymology , Phylogeny , Plant Proteins/metabolism , Selection, Genetic
20.
J Sci Food Agric ; 97(12): 4258-4263, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28233321

ABSTRACT

BACKGROUND: Apple is one of the staple fruits worldwide which are a good source of mineral nutrients. However, little is known about genetic variation for mineral nutrition in apple germplasm. In this study, the calcium and zinc contents in mature fruits of 378 apple cultivars and 39 wild relatives were assessed. Mineral concentrations were quantified using flame atomic absorption spectroscopy (FAAS). RESULTS: Both calcium and zinc accumulation showed great variation among accessions tested. Overall, wild fruits were significantly richer in zinc than cultivated fruits, while the average concentration of calcium was similar between cultivated and wild fruits. The difference in zinc concentration between wild and cultivated fruits may be an indirect result of artificial selection on fruit characteristics during apple domestication. Moreover, calcium concentration in fruit showed a decreasing trend throughout fruit development of apple, while zinc concentration in fruit displayed a complex variation pattern in the late stages of fruit development. CONCLUSION: The finding of a wild genetic variation for fruit calcium and zinc accumulation in apple germplasm could be helpful for future research on genetic dissection and improvement of calcium and zinc accumulation in apple fruit. © 2017 Society of Chemical Industry.


Subject(s)
Calcium/analysis , Malus/chemistry , Zinc/analysis , Calcium/metabolism , Fruit/chemistry , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Malus/genetics , Malus/growth & development , Malus/metabolism , Nutritive Value , Spectrophotometry, Atomic , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL