Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Int J Biol Sci ; 20(3): 831-847, 2024.
Article in English | MEDLINE | ID: mdl-38250153

ABSTRACT

Mitochondria are energy-producing organelles that are mobile and harbor dynamic network structures. Although mitochondria and endoplasmic reticulum (ER) play distinct cellular roles, they are physically connected to maintain functional homeostasis. Abnormal changes in this interaction have been linked to pathological states, including cardiac hypertrophy. However, the exact regulatory molecules and mechanisms are yet to be elucidated. Here, we report that ATPase family AAA-domain containing protein 3A (ATAD3A) is an essential regulator of ER-mitochondria interplay within the mitochondria-associated membrane (MAM). ATAD3A prevents isoproterenol (ISO)-induced mitochondrial calcium accumulation, improving mitochondrial dysfunction and ER stress, which preserves cardiac function and attenuates cardiac hypertrophy. We also find that ATAD3A is a new substrate of NAD+-dependent deacetylase Sirtuin 3 (SIRT3). Notably, the heart mitochondria of SIRT3 knockout mice exhibited excessive formation of MAMs. Mechanistically, ATAD3A specifically undergoes acetylation, which reduces self-oligomerization and promotes cardiac hypertrophy. ATAD3A oligomerization is disrupted by acetylation at K134 site, and ATAD3A monomer closely interacts with the IP3R1-GRP75-VDAC1 complex, which leads to mitochondrial calcium overload and dysfunction. In summary, ATAD3A localizes to the MAMs, where it protects the homeostasis of ER-mitochondria contacts, quenching mitochondrial calcium overload and keeping mitochondrial bioenergetics unresponsive to ER stress. The SIRT3-ATAD3A axis represents a potential therapeutic target for cardiac hypertrophy.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Mitochondrial Proteins , Sirtuin 3 , Animals , Mice , Calcium , Cardiomegaly/genetics , Homeostasis , Mitochondria , Sirtuin 3/genetics , ATPases Associated with Diverse Cellular Activities/genetics , Mitochondrial Proteins/genetics
2.
Acta Pharm Sin B ; 13(12): 4875-4892, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045054

ABSTRACT

The clinical utilization of doxorubicin (Dox) in various malignancies is restrained by its major adverse effect: irreversible cardiomyopathy. Extensive studies have been done to explore the prevention of Dox cardiomyopathy. Currently, ferroptosis has been shown to participate in the incidence and development of Dox cardiomyopathy. Sorting Nexin 3 (SNX3), the retromer-associated cargo binding protein with important physiological functions, was identified as a potent therapeutic target for cardiac hypertrophy in our previous study. However, few study has shown whether SNX3 plays a critical role in Dox-induced cardiomyopathy. In this study, a decreased level of SNX3 in Dox-induced cardiomyopathy was observed. Cardiac-specific Snx3 knockout (Snx3-cKO) significantly alleviated cardiomyopathy by downregulating Dox-induced ferroptosis significantly. SNX3 was further demonstrated to exacerbate Dox-induced cardiomyopathy via induction of ferroptosis in vivo and in vitro, and cardiac-specific Snx3 transgenic (Snx3-cTg) mice were more susceptible to Dox-induced ferroptosis and cardiomyopathy. Mechanistically, SNX3 facilitated the recycling of transferrin 1 receptor (TFRC) via direct interaction, disrupting iron homeostasis, increasing the accumulation of iron, triggering ferroptosis, and eventually exacerbating Dox-induced cardiomyopathy. Overall, these findings established a direct SNX3-TFRC-ferroptosis positive regulatory axis in Dox-induced cardiomyopathy and suggested that targeting SNX3 provided a new effective therapeutic strategy for Dox-induced cardiomyopathy through TFRC-dependent ferroptosis.

SELECTION OF CITATIONS
SEARCH DETAIL