Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
PLoS Pathog ; 19(1): e1011129, 2023 01.
Article in English | MEDLINE | ID: mdl-36716341

ABSTRACT

Parasitic roundworms (nematodes) have lost genes involved in the de novo biosynthesis of haem, but have evolved the capacity to acquire and utilise exogenous haem from host animals. However, very little is known about the processes or mechanisms underlying haem acquisition and utilisation in parasites. Here, we reveal that HRG-1 is a conserved and unique haem transporter in a broad range of parasitic nematodes of socioeconomic importance, which enables haem uptake via intestinal cells, facilitates cellular haem utilisation through the endo-lysosomal system, and exhibits a conspicuous distribution at the basal laminae covering the alimentary tract, muscles and gonads. The broader tissue expression pattern of HRG-1 in Haemonchus contortus (barber's pole worm) compared with its orthologues in the free-living nematode Caenorhabditis elegans indicates critical involvement of this unique haem transporter in haem homeostasis in tissues and organs of the parasitic nematode. RNAi-mediated gene knockdown of hrg-1 resulted in sick and lethal phenotypes of infective larvae of H. contortus, which could only be rescued by supplementation of exogenous haem in the early developmental stage. Notably, the RNAi-treated infective larvae could not establish infection or survive in the mammalian host, suggesting an indispensable role of this haem transporter in the survival of this parasite. This study provides new insights into the haem biology of a parasitic nematode, demonstrates that haem acquisition by HRG-1 is essential for H. contortus survival and infection, and suggests that HRG-1 could be an intervention target candidate in a range of parasitic nematodes.


Subject(s)
Caenorhabditis elegans Proteins , Haemonchus , Nematoda , Parasites , Animals , Nematoda/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Haemonchus/genetics , Haemonchus/metabolism , Heme/metabolism , Parasites/metabolism , Membrane Transport Proteins/metabolism , Mammals
2.
Vet Res ; 55(1): 10, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233899

ABSTRACT

Toxoplasma gondii is among the most important parasites worldwide. The apicoplast is a unique organelle shared by all Apicomplexan protozoa. Increasing lines of evidence suggest that the apicoplast possesses its own ubiquitination system. Deubiquitination is a crucial step executed by deubiquitinase (DUB) during protein ubiquitination. While multiple components of ubiquitination have been identified in T. gondii, the deubiquitinases involved remain unknown. The aim of the current study was to delineate the localization of TgOTU7 and elucidate its functions. TgOTU7 was specifically localized at the apicoplast, and its expression was largely regulated during the cell cycle. Additionally, TgOTU7 efficiently breaks down ubiquitin chains, exhibits linkage-nonspecific deubiquitinating activity and is critical for the lytic cycle and apicoplast biogenesis, similar to the transcription of the apicoplast genome and the nuclear genes encoding apicoplast-targeted proteins. Taken together, the results indicate that the newly described deubiquitinase TgOTU7 specifically localizes to the apicoplast and affects the cell growth and apicoplast homeostasis of T. gondii.


Subject(s)
Apicoplasts , Toxoplasma , Animals , Toxoplasma/genetics , Apicoplasts/genetics , Apicoplasts/metabolism , Cell Cycle , Homeostasis , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
3.
PLoS Pathog ; 17(7): e1009767, 2021 07.
Article in English | MEDLINE | ID: mdl-34270617

ABSTRACT

Hypobiosis (facultative developmental arrest) is the most important life-cycle adaptation ensuring survival of parasitic nematodes under adverse conditions. Little is known about such survival mechanisms, although ascarosides (ascarylose with fatty acid-derived side chains) have been reported to mediate the formation of dauer larvae in the free-living nematode Caenorhabditis elegans. Here, we investigated the role of a key gene acox-1, in the larval development of Haemonchus contortus, one of the most important parasitic nematodes that employ hypobiosis as a routine survival mechanism. In this parasite, acox-1 encodes three proteins (ACOXs) that all show a fatty acid oxidation activity in vitro and in vivo, and interact with a peroxin PEX-5 in peroxisomes. In particular, a peroxisomal targeting signal type1 (PTS1) sequence is required for ACOX-1 to be recognised by PEX-5. Analyses on developmental transcription and tissue expression show that acox-1 is predominantly expressed in the intestine and hypodermis of H. contortus, particularly in the early larval stages in the environment and the arrested fourth larval stage within host animals. Knockdown of acox-1 and pex-5 in parasitic H. contortus shows that these genes play essential roles in the post-embryonic larval development and likely in the facultative arrest of this species. A comprehensive understanding of these genes and the associated ß-oxidation cycle of fatty acids should provide novel insights into the developmental regulation of parasitic nematodes, and into the discovery of novel interventions for species of socioeconomic importance.


Subject(s)
Acyl-CoA Oxidase/metabolism , Haemonchus/metabolism , Helminth Proteins/metabolism , Larva/metabolism , Peroxisome-Targeting Signal 1 Receptor/metabolism , Animals , Haemonchiasis/metabolism , Haemonchus/growth & development , Larva/growth & development , Rabbits , Sheep
4.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446130

ABSTRACT

Many parasitic worms have a major adverse impact on human and animal populations worldwide due to the chronicity of their infections. There is a growing body of evidence indicating that extracellular vesicles (EVs) are intimately involved in modulating (suppressing) inflammatory/immune host responses and parasitism. As one of the most pathogenic nematodes of livestock animals, Haemonchus contortus is an ideal model system for EV exploration. Here, employing a multi-step enrichment process (in vitro culture, followed by ultracentrifugation, size exclusion and filtration), we enriched EVs from H. contortus and undertook the first comprehensive (qualitative and quantitative) multi-omic investigation of EV proteins and lipids using advanced liquid chromatography-mass spectrometry and informatics methods. We identified and quantified 561 proteins and 446 lipids in EVs and compared these molecules with those of adult worms. We identified unique molecules in EVs, such as proteins linked to lipid transportation and lipid species (i.e., sphingolipids) associated with signalling, indicating the involvement of these molecules in parasite-host cross-talk. This work provides a solid starting point to explore the functional roles of EV-specific proteins and lipids in modulating parasite-host cross-talk, and the prospect of finding ways of disrupting or interrupting this relationship to suppress or eliminate parasite infection.


Subject(s)
Extracellular Vesicles , Haemonchus , Parasites , Animals , Humans , Haemonchus/chemistry , Haemonchus/metabolism , Proteome/metabolism , Lipidomics , Lipids
5.
Int J Mol Sci ; 23(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36077116

ABSTRACT

Here, we explored transcriptomic differences among early egg (Ee), late egg (Le) and adult female (Af) stages of the scabies mite, Sarcoptes scabiei, using an integrative bioinformatic approach. We recorded a high, negative correlation between miRNAs and genes with decreased mRNA transcription between the developmental stages, indicating substantial post-transcriptional repression; we also showed a positive correlation between miRNAs and genes with increased mRNA transcription, suggesting indirect post-transcriptional regulation. The alterations in mRNA transcription between the egg and adult female stages of S. scabiei were inferred to be linked to metabolism (including carbohydrate and lipid degradation, amino acid and energy metabolism), environmental information processing (e.g., signal transduction and signalling molecules), genetic information processing (e.g., transcription and translation) and/or organismal systems. Taken together, these results provide insight into the transcription of this socioeconomically important parasitic mite, with a particular focus on the egg stage. This work encourages further, detailed laboratory studies of miRNA regulation across all developmental stages of S. scabiei and might assist in discovering new intervention targets in the egg stage of S. scabiei.


Subject(s)
MicroRNAs , Scabies , Animals , Female , MicroRNAs/genetics , RNA, Messenger , Sarcoptes scabiei/genetics , Scabies/genetics , Scabies/parasitology , Transcriptome
6.
PLoS Pathog ; 15(7): e1007960, 2019 07.
Article in English | MEDLINE | ID: mdl-31335899

ABSTRACT

Here, we discovered an endogenous dafachronic acid (DA) in the socioeconomically important parasitic nematode Haemonchus contortus. We demonstrate that DA promotes larval exsheathment and development in this nematode via a relatively conserved nuclear hormone receptor (DAF-12). This stimulatory effect is dose- and time-dependent, and relates to a modulation of dauer-like signalling, and glycerolipid and glycerophospholipid metabolism, likely via a negative feedback loop. Specific chemical inhibition of DAF-9 (cytochrome P450) was shown to significantly reduce the amount of endogenous DA in H. contortus; compromise both larval exsheathment and development in vitro; and modulate lipid metabolism. Taken together, this evidence shows that DA plays a key functional role in the developmental transition from the free-living to the parasitic stage of H. contortus by modulating the dauer-like signalling pathway and lipid metabolism. Understanding the intricacies of the DA-DAF-12 system and associated networks in H. contortus and related parasitic nematodes could pave the way to new, nematode-specific treatments.


Subject(s)
Cholestenes/metabolism , Haemonchus/growth & development , Haemonchus/metabolism , Animals , Gene Expression Regulation, Developmental , Genes, Helminth , Haemonchiasis/parasitology , Haemonchiasis/veterinary , Haemonchus/pathogenicity , Helminth Proteins/chemistry , Helminth Proteins/genetics , Helminth Proteins/metabolism , Isoxazoles/pharmacology , Larva/drug effects , Larva/growth & development , Larva/metabolism , Lipid Metabolism/drug effects , Piperidines/pharmacology , Pyridines/pharmacology , Sheep , Sheep Diseases/parasitology , Sheep, Domestic , Signal Transduction
7.
Molecules ; 26(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068691

ABSTRACT

Due to widespread multi-drug resistance in parasitic nematodes of livestock animals, there is an urgent need to discover new anthelmintics with distinct mechanisms of action. Extending previous work, here we screened a panel of 245 chemically-diverse small molecules for anti-parasitic activity against Haemonchus contortus-an economically important parasitic nematode of livestock. This panel was screened in vitro against exsheathed third-stage larvae (xL3) of H. contortus using an established phenotypic assay, and the potency of select compounds to inhibit larval motility and development assessed in dose-response assays. Of the 245 compounds screened, three-designated MPK18, MPK334 and YAK308-induced non-wildtype larval phenotypes and repeatedly inhibited xL3-motility, with IC50 values of 45.2 µM, 17.1 µM and 52.7 µM, respectively; two also inhibited larval development, with IC50 values of 12.3 µM (MPK334) and 6.5 µM (YAK308), and none of the three was toxic to human liver cells (HepG2). These findings suggest that these compounds deserve further evaluation as nematocidal candidates. Future work should focus on structure-activity relationship (SAR) studies of these chemical scaffolds, and assess the in vitro and in vivo efficacies and safety of optimised compounds against adults of H. contortus.


Subject(s)
Haemonchus/drug effects , Small Molecule Libraries/pharmacology , Animals , Haemonchus/growth & development , Larva/drug effects , Larva/growth & development , Phenotype , Small Molecule Libraries/chemistry
8.
Molecules ; 25(8)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344703

ABSTRACT

Kava extract, an aqueous rhizome emulsion of the plant Piper methysticum, has been used for centuries by Pacific Islanders as a ceremonial beverage, and has been sold as an anxiolytic agent for some decades. Kavalactones are a major constituent of kava extract. In a previous investigation, we had identified three kavalactones that inhibit larval development of Haemonchus contortus in an in vitro-bioassay. In the present study, we synthesized two kavalactones, desmethoxyyangonin and yangonin, as well as 17 analogues thereof, and evaluated their anthelmintic activities using the same bioassay as employed previously. Structure activity relationship (SAR) studies showed that a 4-substituent on the pendant aryl ring was required for activity. In particular, compounds with 4-trifluoromethoxy, 4-difluoromethoxy, 4-phenoxy, and 4-N-morpholine substitutions had anthelmintic activities (IC50 values in the range of 1.9 to 8.9 µM) that were greater than either of the parent natural products-desmethoxyyangonin (IC50 of 37.1 µM) and yangonin (IC50 of 15.0 µM). The synthesized analogues did not exhibit toxicity on HepG2 human hepatoma cells in vitro at concentrations of up to 40 µM. These findings confirm the previously-identified kavalactone scaffold as a promising chemotype for new anthelmintics and provide a basis for a detailed SAR investigation focused on developing a novel anthelmintic agent.


Subject(s)
Anthelmintics/chemical synthesis , Anthelmintics/pharmacology , Haemonchus/drug effects , Kava/chemistry , Animals , Dose-Response Relationship, Drug , Larva/drug effects , Molecular Structure , Parasitic Sensitivity Tests
9.
Parasitol Res ; 117(3): 775-782, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29423531

ABSTRACT

Toxocara canis is a zoonotic parasite with worldwide distribution. ATP-binding cassette (ABC) transporters are integral membrane proteins which involve in a range of biological processes in various organisms. In present study, the full-length coding sequence of abcg-5 gene of T. canis (Tc-abcg-5) was cloned and characterized. A 633 aa polypeptide containing two conserved Walker A and Walker B motifs was predicted from a continuous 1902 nt open reading frame. Quantitative real-time PCR was employed to determine the transcriptional levels of Tc-abcg-5 gene in adult male and female worms, which indicated high mRNA level of Tc-abcg-5 in the reproductive tract of adult female T. canis. Tc-abcg-5 was expressed to produce rabbit polyclonal antiserum against recombinant TcABCG5. Indirect-fluorescence immunohistochemical assays were carried out to detect the tissue distribution of TcABCG5, which showed predominant distribution of TcABCG5 in the uterus (especially in the germ cells) of adult female T. canis. Tissue transcription and expression pattern of Tc-abcg-5 indicated that Tc-abcg-5 might play essential roles in the reproduction of this parasitic nematode.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5/biosynthesis , Toxocara canis/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Animals , Dog Diseases/parasitology , Dogs , Female , Male , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reproduction , Tissue Distribution , Toxocara canis/isolation & purification , Toxocara canis/physiology , Toxocariasis/parasitology , Transcription, Genetic , Uterus/metabolism
10.
Exp Parasitol ; 177: 22-27, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28351684

ABSTRACT

Toxocara canis is an common intestinal nematode of canids and the principal causative agent of human toxocariasis. Vitellogenin (Vg), a source of amino acids and lipids in the eggs, are considered to play an important role in embryo development of a wide range of organisms. In the present study, the transcriptional levels of Tc-vit-6 gene in male and female adult T. canis were determined by quantitative real-time PCR, which indicated high transcription of Tc-vit-6 in the intestine, reproductive tract and body wall of male and female adult T. canis. The fragment of Tc-vit-6 encoding a vWD domain, was cloned and expressed to produce a rabbit anti-TcvWD polyclonal antibody. Tissue distribution of TcVg6 was detected by immunohistochemical assays, which showed predominant distribution of TcVg6 in the tissues of intestine, as well as reproductive tract (including some of the germ cells) and musculature of male and female adult worms. Collectively, these results indicated multiple biological roles of TcVg6 apart from that in the reproduction of T. canis.


Subject(s)
Toxocara canis/metabolism , Toxocariasis/parasitology , Vitellogenins/metabolism , Animals , Antibodies, Helminth/biosynthesis , Blotting, Western , Canidae/parasitology , Dogs , Female , Gene Expression Regulation , Genitalia/metabolism , Humans , Immunohistochemistry , Intestinal Mucosa/metabolism , Male , Muscles/metabolism , Rabbits , Real-Time Polymerase Chain Reaction , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Tissue Distribution , Transcription, Genetic , Vitellogenins/genetics , Vitellogenins/immunology , Vitellogenins/physiology
11.
Parasitol Res ; 115(9): 3631-6, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27215210

ABSTRACT

Toxocara canis is an intestinal nematode of canids with a worldwide distribution, causing an important but neglected parasitic zoonosis in humans. Aquaporins (AQP) are a family of water channel proteins, which function as membrane channels to regulate water homeostasis. In this study, the coding sequence of aquaporin-1 gene of T. canis (Tc-aqp-1) was cloned and characterized. The obtained Tc-aqp-1 coding sequence was 933 bp in length, which predicted to encode 311 amino acids. Two conserved asparagine-proline-alanine (NPA) motifs were identified in the multiple sequence alignments. Phylogenetic analysis revealed the closest relationship between T. canis and Opisthorchis viverrini based on aquaporin-1 amino acid sequence. A structure was predicted with ligand binding sites predicted at H93, N95, N226, L94, I79, and I210 and with active sites predicted at I256 and G207. Gene Ontology (GO) annotations predicted its cellular component term of integral component of plasma membrane (GO: 0005887), molecular function term of channel activity (GO: 0015250), and biological process term of water transport (GO: 0006833). Tissue expression analysis revealed that the Tc-aqp-1 was highly expressed in the intestine of adult male. The findings of the present study provide the basis for further functional studies of T. canis aquaporin-1.


Subject(s)
Aquaporin 1/genetics , Toxocara canis/genetics , Amino Acid Sequence , Animals , Aquaporin 1/chemistry , Female , Humans , Male , Oligopeptides/chemistry , Opisthorchis/classification , Opisthorchis/genetics , Phylogeny , Sequence Alignment , Toxocara canis/classification
12.
Vet Parasitol ; 327: 110115, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38232511

ABSTRACT

Toxoplasma gondii is a widespread and specialized intracellular protozoan pathogen that affects one third of the world' s population, posing a great threat to public health. As the definitive host, cats excrete oocysts and play a crucial role in the transmission of toxoplasmosis. The current diagnostic tools usually require bulky equipment and expertize, which hinders the efficient diagnosis and intervention of Toxoplasma infection in cats. In this study, we combined (RPA) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technique to establish an easier method for the detection of T. gondii oocysts in cat fecal samples. The sensitivity, specificity, and practicability of the established RPA-CRISPR/Cas9 method were evaluated using a lateral flow strip, with the limitation of detection determined at 10 plasmid copies/µL (corresponding to about one oocyst), cross reactivity to none of Giardia lamblia, Cryptosporidium sp., Microsporidium biberi and Blastocystis hominis that also commonly found in cats, and comparable performance in detecting T. gondii in clinical samples to conventional PCR amplification. This RPA-CRISPR/Cas9 method provides an alternative to conventional molecular tools used in the clinical diagnosis of Toxoplasma infection in cats and other animals.


Subject(s)
Cat Diseases , Cryptosporidiosis , Cryptosporidium , Toxoplasma , Toxoplasmosis, Animal , Toxoplasmosis , Animals , Cats , Toxoplasma/genetics , CRISPR-Cas Systems , Oocysts/genetics , Feces , Cat Diseases/diagnosis , Toxoplasmosis, Animal/epidemiology
13.
Parasit Vectors ; 17(1): 17, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38217036

ABSTRACT

BACKGROUND: Components of excretory/secretory products (ESPs) of helminths have been proposed as vaccine targets and shown to play a role in modulating host immune responses for decades. Such research interest is further increased by the discovery of extracellular vesicles (EVs) in the ESPs of parasitic worms. Although efforts have been made to reveal the cargos of EVs, little is known about the proteomic differences between EVs and canonical ESPs released by parasitic worms from animals. METHODS: The total ESPs of Haemonchus contortus (barber's pole worm) were obtained by short-term in vitro culturing of young adult worms, and small EVs were isolated from ESPs using an ultracentrifugation method. Data-dependent acquisition (DDA) label-free Nano-LC-MS/MS was used to quantify the proteomic difference between small EVs and EV-depleted ESPs of H. contortus. Functional annotation and enrichment of the differential proteins were performed regarding cellular components, molecular functions, pathways, and/or biological processes. RESULTS: A total of 1697 proteins were identified in small EVs and EV-depleted ESPs of H. contortus adult worms, with 706 unique proteins detected in the former and 597 unique proteins in the latter. It was revealed that proteins in small EVs are dominantly cytoplasmic, whereas proteins in EV-depleted ESPs are mainly extracellular; canonical ESPs such as proteases and small GTPases were abundantly detected in small EVs, and SCP/TAP-, DUF-, and GLOBIN domain-containing proteins were mainly found in EV-depleted ESPs. Compared with well-characterised proteins in small EVs, about 50% of the proteins detected in EV-depleted ESPs were poorly characterised. CONCLUSIONS: There are remarkable differences between small EVs and EV-depleted ESPs of H. contortus in terms of protein composition. Immune modulatory effects caused by nematode ESPs are possibly contributed mainly by the proteins in small EVs.


Subject(s)
Extracellular Vesicles , Haemonchus , Nematoda , Animals , Proteomics , Tandem Mass Spectrometry , Haemonchus/metabolism
14.
Infect Genet Evol ; 122: 105609, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38806077

ABSTRACT

Nuclear hormone receptors (NHRs) are emerging target candidates against nematode infection and resistance. However, there is a lack of comprehensive information on NHR-coding genes in parasitic nematodes. In this study, we curated the nhr gene family for 60 major parasitic nematodes from humans and animals. Compared with the free-living model organism Caenorhabditis elegans, a remarkable contraction of the nhr family was revealed in parasitic species, with genetic diversification and conservation unveiled among nematode Clades I (10-13), III (16-42), IV (33-35) and V (25-64). Using an in vitro biosystem, we demonstrated that 40 nhr genes in a blood-feeding nematode Haemonchus contortus (clade V; barber's pole worm) were responsive to host serum and one nhr gene (i.e., nhr-64) was consistently stimulated by anthelmintics (i.e., ivermectin, thiabendazole and levamisole); Using a high-throughput RNA interference platform, we knocked down 43 nhr genes of H. contortus and identified at least two genes that are required for the viability (i.e., nhr-105) and development (i.e., nhr-17) of the infective larvae of this parasitic nematode in vitro. Harnessing this preliminary functional atlas of nhr genes for H. contortus will prime the biological studies of this gene family in nematode genetics, infection, and anthelmintic metabolism within host animals, as well as the promising discovery of novel intervention targets.


Subject(s)
Haemonchus , Larva , RNA Interference , Receptors, Cytoplasmic and Nuclear , Animals , Larva/genetics , Haemonchus/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Multigene Family , Phylogeny , Anthelmintics/pharmacology , Genome, Helminth , Helminth Proteins/genetics , Helminth Proteins/metabolism , Humans
15.
Parasit Vectors ; 17(1): 256, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867315

ABSTRACT

BACKGROUND: Human toxocariasis is a neglected parasitic disease characterised by the syndromes visceral, cerebral, and ocular larva migrans. This disease is caused by the migrating larvae of Toxocara roundworms from dogs and cats, affecting 1.4 billion people globally. Via extracellular vesicles (EVs), microRNAs have been demonstrated to play roles in host-parasite interactions and proposed as circulating biomarkers for the diagnosis and follow-up of parasitic diseases. METHODS: Small RNA-seq was conducted to identify miRNAs in the infective larvae of T. canis and plasma EV-containing preparations of infected BALB/c mice. Differential expression analysis and target prediction were performed to indicate miRNAs involved in host-parasite interactions and miRNAs associated with visceral and/or cerebral larva migrans in the infected mice. Quantitative real-time polymerase chain reaction (PCR) was used to amplify circulating miRNAs from the infected mice. RESULTS: This study reports host and parasite miRNAs in the plasma of BALB/c mice with visceral and cerebral larva migrans and demonstrates the alterations of these miRNAs during the migration of larvae from the livers through the lungs and to the brains of infected mice. After filtering unspecific changes in an irrelevant control, T. canis-derived miRNAs and T. canis infection-induced differential miRNAs are predicted to modulate genes consistently involved in mitogen-activated protein kinase (MAPK) signalling and pathways regulating axon guidance and pluripotency of stem in the infected mice with visceral and cerebral larva migrans. For these plasma circulating miRNAs predicted to be involved in host-parasite crosstalk, two murine miRNAs (miR-26b-5p and miR-122-5p) are experimentally verified to be responsive to larva migrans and represent circulating biomarker candidates for visceral and cerebral toxocariasis in BALB/c mice. CONCLUSIONS: Our findings provide novel insights into the crosstalk of T. canis and the mammalian host via plasma circulating miRNAs, and prime agents and indicators for visceral and cerebral larva migrans. A deep understanding of these aspects will underpin the diagnosis and control of toxocariasis in humans and animals.


Subject(s)
Circulating MicroRNA , Mice, Inbred BALB C , Toxocara canis , Toxocariasis , Animals , Toxocara canis/genetics , Toxocara canis/physiology , Mice , Toxocariasis/parasitology , Toxocariasis/blood , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Host-Parasite Interactions , Larva Migrans, Visceral/parasitology , Larva Migrans, Visceral/blood , Female , Larva Migrans/parasitology , Larva Migrans/blood , Larva/genetics , Dogs , MicroRNAs/blood , MicroRNAs/genetics , Biomarkers/blood , Brain/parasitology
16.
Vet Parasitol ; 315: 109888, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36731210

ABSTRACT

The apicoplast, which is the result of secondary endosymbiosis, is a distinctive subcellular organelle and a crucial therapeutic target for apicomplexan parasites. The majority of apicoplast-resident proteins are encoded by the nuclear genome and target the apicoplast via bipartite targeting signals consisting of a signal peptide and a transit peptide. The properties and functions of these peptides are poorly understood, which hinders the identification of apicoplast proteins and the study for plastid evolution. Here, the targeting signals of the recently discovered apicoplast tRNA thiouridylase TgMnmA of Toxoplasma gondii were analyzed. Our data using a reporter (the enhanced green fluorescent protein) fused with individual fragments containing various numbers of its N-terminal amino acids unequivocally revealed that the first 28 amino acids of TgMnmA functioned as a signal peptide for cellular secretion. The N-terminal 150 amino acids were sufficient to direct the fusion protein to the apicoplast, whereas its deletion caused the fusion protein to be localized to the mitochondrion. Our data further demonstrated that the apicoplast, rhoptry, and mitochondrion shared similar targeting signals, indicating that the apicoplast localization peptide was trans-organellar in function. In addition, the apicoplast localization peptide was important for the healthy proliferation of tachyzoites. In conclusion, the targeting signals of the nucleus-encoded apicoplast-targeted protein TgMnmA have been mapped out and the importance of this localization peptide has been elucidated in the current study.


Subject(s)
Apicoplasts , Toxoplasma , Animals , Toxoplasma/genetics , Toxoplasma/metabolism , Apicoplasts/metabolism , Protein Sorting Signals/genetics , Peptides , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Amino Acids/metabolism
17.
Microbiol Spectr ; 11(3): e0010423, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37199633

ABSTRACT

Here, we report that the inhibition of the PP2A subfamily by okadaic acid results in an accumulation of polysaccharides in the acute infection stage (tachyzoites) of Toxoplasma gondii, which is a protozoan of global zoonotic importance and a model for the apicomplexan parasites. The loss of the catalytic subunit α of PP2A (ΔPP2Acα) in RHΔku80 leads to the polysaccharide accumulation phenotype in the base of tachyzoites as well as residual bodies and significantly compromises the intracellular growth in vitro and the virulence in vivo. A metabolomic analysis revealed that the accumulated polysaccharides in ΔPP2Acα are derived from interrupted glucose metabolism, which affects the production of ATP and energy homeostasis in the T. gondii knockout. The assembly of the PP2Acα holoenzyme complex involved in the amylopectin metabolism in tachyzoites is possibly not regulated by LCMT1 or PME1, and this finding contributes to the identification of the regulatory B subunit (B'/PR61). The loss of B'/PR61 results in the accumulation of polysaccharide granules in the tachyzoites as well as reduced plaque formation ability, exactly the same as ΔPP2Acα. Taken together, we have identified a PP2Acα-B'/PR61 holoenzyme complex that plays a crucial role in the carbohydrate metabolism and viability in T. gondii, and its deficiency in function remarkably suppresses the growth and virulence of this important zoonotic parasite both in vitro and in vivo. Hence, rendering the PP2Acα-B'/PR61 holoenzyme functionless should be a promising strategy for the intervention of Toxoplasma acute infection and toxoplasmosis. IMPORTANCE Toxoplasma gondii switches back and forth between acute and chronic infections, mainly in response to host immunologic status, which is characterized by flexible but specific energy metabolism. Polysaccharide granules are accumulated in the acute infection stage of T. gondii that have been exposed to a chemical inhibitor of the PP2A subfamily. The genetic depletion of the catalytic subunit α of PP2A leads to this phenotype and significantly affects the cell metabolism, energy production, and viability. Further, a regulatory B subunit PR61 is necessary for the PP2A holoenzyme to function in glucose metabolism and in the intracellular growth of T. gondii tachyzoites. A deficiency of this PP2A holoenzyme complex (PP2Acα-B'/PR61) in T. gondii knockouts results in the abnormal accumulation of polysaccharides and the disruption of energy metabolism, suppressing their growth and virulence. These findings provide novel insights into cell metabolism and identify a potential target for an intervention against a T. gondii acute infection.


Subject(s)
Parasites , Toxoplasma , Animals , Toxoplasma/genetics , Amylopectin , Cell Proliferation , Holoenzymes/metabolism , Glucose/metabolism
18.
Vet Parasitol ; 323: 110052, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37865081

ABSTRACT

Protease inhibitors are major components of excretory/secretory products released by parasitic nematodes and have been proposed to play roles in host-parasite interactions. Haemonchus contortus (the barber's pole worm) encodes for several serine protease inhibitors, and in a previous study we identified a trypsin inhibitor-like serine protease inhibitor of this blood-feeding nematode, SPI-I8, as necessary for anticoagulation. Here, we demonstrated that a bovine pancreatic trypsin inhibitor/Kunitz-type serine protease inhibitor (BPTI/Kunitz) domain-containing protein highly expressed in parasitic stages, HCON_00133150, is involved in suppressing proinflammatory cytokine production in mammalian cells. Fluorescent labelling of HCON_00133150 revealed a punctate localisation at the inner hypodermal membrane of H. contortus, an organ closely related to the excretory column. Yeast two-hybrid screening and immunoprecipitation-mass spectrometry identified that the recombinant HCON_00133150 physically interacted with a range of host proteins including the G protein subunit beta 1 of sheep (Ovis aries; OaGNB1), a negative regulator of NLRP3 inflammasome activation. Interestingly, heterologous expression of HCON_00133150 enhanced the inhibitory effect of OaGNB1 on NLRP3 inflammasome and the maturation of proinflammatory cytokines IL-1ß and IL-18 in transfected cells. 1-to-1 orthologues (n = 33) of BPTI/Kunitz inhibitor domain-containing proteins were predicted in clades III, IV and V (but not clade I) parasitic nematodes. Structural (tandem BPTI/Kunitz inhibitor domains inverted into the globular reticulation) and functional (a GNB1 enhancer) characterisation of HCON_00133150 and its orthologues elucidated that these molecules might contribute to immune suppression by parasitic nematodes in animals and humans.

19.
Parasit Vectors ; 16(1): 230, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37430357

ABSTRACT

BACKGROUND: Nematodes have lost the ability to synthesise necessary lipids de novo and have complementally evolved the capacity to acquire fatty acids and their derivatives from a diet or host animal. Nematode-specific fatty acid- and retinol-binding protein (FAR) family is one approach that facilitates lipid acquisition, representing an Achilles heel and potential target against roundworms of socioeconomic significance. However, little is known about their detailed functional roles in either free-living or parasitic nematodes. METHODS: A genome-wide identification and curation were performed to screen the FAR family members of Haemonchus contortus. Their transcription patterns in worms were also analysed to identify the targets. Ligand binding assay and molecular docking were conducted to verify the fatty acid binding activities of FAR proteins of interest. RNA interference (RNAi) and heterologous expression (rescuing) experiments were designed to explore the potential roles of the selected FAR protein in nematodes. Localisation of the protein was shown in sections of paraffin-embedded worms after an immunohistochemistry (IHC) assay. RESULTS: Here, an orthologue of far-6 in the model organism Caenorhabditis elegans (Ce-far-6) was functionally characterised in a parasitic nematode, H. contortus (Hc-far-6). It is demonstrated that knockdown of Ce-far-6 gene did not affect worm fat content, reproduction, or lifespan, but decreased worm body length at an early life stage of C. elegans. In particular, the Ce-far-6 mutant associated phenotype was completely rescued by Hc-far-6, suggesting a conserved functional role. Surprisingly, there were distinct tissue expression patterns of FAR-6 in the free-living C. elegans and parasitic H. contortus. High transcriptional level of Hc-far-6 and dominant expression of FAR-6 in the intestine of the parasitic stage of H. contortus link this gene/protein to nematode parasitism. CONCLUSIONS: These findings substantially enhance our understanding of far genes and the associated lipid biology of this important parasitic nematode at a molecular level, and the approaches established are readily applicable to the studies of far genes in a broad range of parasites.


Subject(s)
Caenorhabditis elegans , Haemonchus , Animals , Caenorhabditis elegans/genetics , Haemonchus/genetics , Molecular Docking Simulation , Biological Assay , Fatty Acids
20.
Int J Parasitol ; 52(9): 581-590, 2022 08.
Article in English | MEDLINE | ID: mdl-35853501

ABSTRACT

The ubiquitin-mediated pathway has been comprehensively explored in the free-living nematode Caenorhabditis elegans, but very little is known about this pathway in parasitic nematodes. Here, we inferred the ubiquitination pathway for an economically significant and pathogenic nematode - Haemonchus contortus - using abundant resources available for C. elegans. We identified 215 genes encoding ubiquitin (Ub; n = 3 genes), ubiquitin-activating enzyme (E1; one), -conjugating enzymes (E2s; 21), ligases (E3s; 157) and deubiquitinating enzymes (DUBs; 33). With reference to C. elegans, Ub, E1 and E2 were relatively conserved in sequence and structure, and E3s and DUBs were divergent, likely reflecting functional and biological uniqueness in H. contortus. Most genes encoding ubiquitination pathway components exhibit high transcription in the egg compared with other stages, indicating marked protein homeostasis in this early developmental stage. The ubiquitination pathway model constructed for H. contortus provides a foundation to explore the ubiquitin-proteasome system, crosstalk between autophagy and the proteasome system, and the parasite-host interactions. Selected E3 and DUB proteins which are very divergent in sequence and structure from host homologues or entirely unique to H. contortus and related parasitic nematodes may represent possible anthelmintic targets.


Subject(s)
Anthelmintics , Haemonchus , Nematoda , Animals , Anthelmintics/metabolism , Caenorhabditis elegans/genetics , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism , Ubiquitination , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL