Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Exp Eye Res ; 169: 28-37, 2018 04.
Article in English | MEDLINE | ID: mdl-29421327

ABSTRACT

Our previous study has shown heme oxygenase-1 (HO-1) protects human lens epithelial cells (LECs) against H2O2-induced oxidative stress and apoptosis. Nrf2, the major regulator of HO-1, is triggered during the mutual induction of oxidative stress and ER stress. In response to ER stress, unfolded protein response (UPR) serves as a program of transcriptional and translational regulation mechanism with PERK involved. Both Nrf2 and ATF4 are activated as the downstream effect of PERK signaling coordinating the convergence of dual stresses. However, the ways in which Nrf2 interacting with ATF4 regulates deteriorated redox state have not yet been fully explored. Here, the transfected LECs with Nrf2 overexpression illustrated enhanced resistance in morphology and viability upon H2O2 treatment condition. Intracellular ROS accumulation arouses ER stress, initiating PERK dependent UPR and inducing the downstream signal Nrf2 and ATF4 auto-phosphorylation. Further, converging at target promoters, ATF4 facilitates Nrf2 with the expression of ARE-dependent phase II antioxidant and detoxification enzymes. According to either Nrf2 or ATF4 gene modification, our data suggests a novel interaction between Nrf2 and ATF4 under oxidative and ER stress, thus drives specific enzymatic and non-enzymatic reactions of antioxidant mechanisms maintaining redox homeostasis. Therapies that restoring Nrf2 or ATF4 expression might help to postpone LECs aging and age-related cataract formation.


Subject(s)
Activating Transcription Factor 4/metabolism , Endoplasmic Reticulum Stress , Epithelial Cells/cytology , Lens, Crystalline/cytology , NF-E2-Related Factor 2/physiology , Oxidative Stress , Blotting, Western , Catalase/metabolism , Cell Line , Cytoprotection , Epithelial Cells/metabolism , Flow Cytometry , Fluorescent Antibody Technique, Indirect , Glutathione/metabolism , Humans , Hydrogen Peroxide/toxicity , Lens, Crystalline/metabolism , Oxidants/toxicity , Phosphorylation , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Superoxide Dismutase/metabolism , Transfection , Unfolded Protein Response/physiology , eIF-2 Kinase/metabolism
2.
Int J Ophthalmol ; 17(7): 1205-1216, 2024.
Article in English | MEDLINE | ID: mdl-39026915

ABSTRACT

AIM: To explore the effect of silent information regulator factor 2-related enzyme 1 (SIRT1) on modulating apoptosis of human lens epithelial cells (HLECs) and alleviating lens opacification of rats through suppressing endoplasmic reticulum (ER) stress. METHODS: HLECs (SRA01/04) were treated with varying concentrations of tunicamycin (TM) for 24h, and the expression of SIRT1 and C/EBP homologous protein (CHOP) was assessed using real-time quantitative polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence. Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8 (CCK-8) assay, respectively. In the SRA01/04 cell apoptosis model, which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation, the expression levels of SIRT1, CHOP, glucose regulated protein 78 (GRP78), and activating transcription factor 4 (ATF4) were examined. The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid (4-PBA; an ER stress inhibitor) was investigated. In vivo, age-related cataract (ARC) rat models were induced by sodium selenite injection, and the protective role of SIRT1, activated by SRT1720 intraperitoneal injections, was evaluated through morphology observation, hematoxylin and eosin (H&E) staining, Western blotting, and RT-PCR. RESULTS: SIRT1 expression was downregulated in TM-induced SRA01/04 cells. Besides, in SRA01/04 cells, both cell apoptosis and CHOP expression increased with the rising doses of TM. ER stress was stimulated by TM, as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model. Inhibition of SIRT1 by siRNA knockdown increased ER stress activation, whereas SRT1720 treatment had opposite results. 4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis. In vivo, SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models. CONCLUSION: SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress. These findings suggest a novel strategy for cataract treatment focused on targeting ER stress, highlighting the therapeutic potential of SIRT1 modulation in ARC development.

SELECTION OF CITATIONS
SEARCH DETAIL