Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Am Chem Soc ; 146(18): 12556-12564, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38660792

ABSTRACT

Transition metal nitride (TMN)-based nanostructures have emerged as promising materials for diverse applications in electronics, photonics, energy storage, and catalysis due to their highly desirable physicochemical properties. However, synthesizing TMN-based nanostructures with designed compositions and morphologies poses challenges, especially in the solution phase. The cation exchange reaction (CER) stands out as a versatile postsynthetic strategy for preparing nanostructures that are otherwise inaccessible through direct synthesis. Nevertheless, exploration of the CER in TMNs lags behind that in metal chalcogenides and metal phosphides. Here, we demonstrate cation exchange in colloidal metal nitride nanocrystals, employing Cu3N nanocrystals as starting materials to synthesize Ni4N and CoN nanocrystals. By controlling the reaction conditions, Cu3N@Ni4N and Cu3N@CoN core@shell heterostructures with tunable compositions can also be obtained. The Ni4N and CoN nanocrystals are evaluated as catalysts for the electrochemical oxygen evolution reaction (OER). Remarkably, CoN nanocrystals demonstrate superior OER performance with a low overpotential of 286 mV at 10 mA·cm-2, a small Tafel slope of 89 mV·dec-1, and long-term stability. Our CER approach in colloidal TMNs offers a new strategy for preparing other metal nitride nanocrystals and their heterostructures, paving the way for prospective applications.

2.
Anim Biotechnol ; 35(1): 2362640, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38860902

ABSTRACT

In this study, we investigated the effects of supplemental Glycyrrhiza polysaccharide (GCP) on growth performance and intestinal health of weaned piglets. Ninety piglets weaned at 28 days of age were randomly allocated to three groups with five replicates per treatment. Piglets were fed the following diets for 28 days: (1) CON (control group), basal diet; (2) G500, CON + 500 mg/kg GCP; (3) G1000, CON + 1000 mg/kg GCP. The results showed that supplementation with 1000 mg/kg GCP increased the average daily gain (ADG) and decreased the feed-to-gain ratio (F/G) (P < 0.05). Serum diamine oxidase (DAO) and D-lactic acid (DL-A) levels were lower in the G1000 group (P < 0.05). Dietary GCP 1000 mg/kg improved mucosal trypsin activity in the duodenum, jejunum and ileum and increased lipase and amylase activity in the jejunum (P < 0.05). Moreover, in the G1000 group, ZO-1, claudin 1 and occludin levels were increased in the jejunum mucosa, whereas interleukin-1ß (IL-1ß) and IL-6 levels were decreased (P < 0.05). The 16S rRNA gene analysis indicated that dietary 1000 mg/kg GCP altered the jejunal microbial community, with increased relative abundances of beneficial bacteria. In conclusion, dietary GCP 1000 mg/kg can improve growth performance, digestive enzyme activity, intestinal immunity, barrier function and microbial community in weaned piglets.


Subject(s)
Animal Feed , Dietary Supplements , Glycyrrhiza , Polysaccharides , Weaning , Animals , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , Swine/growth & development , Animal Feed/analysis , Glycyrrhiza/chemistry , Intestines/drug effects , Diet/veterinary , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Male
3.
Small ; : e2308650, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38078791

ABSTRACT

The exposure of active edge sites of transition metal dichalcogenide (TMD) in TMD-based heterostructures is essential to enhance the catalytic activity toward electrochemical catalytic hydrogen evolution (HER). The construction of TMD-based edge-epitaxial heterostructures can maximally expose the active edge sites. However, owing to the 2D crystal structures, it remains a great challenge to vertically align layered TMDs on non-layered metal chalcogenides. Herein, the synthesis of Cu2-x Se-MoSe2 edge-epitaxial heterostructure is reported by a facile one-pot wet-chemical method. A high density of MoSe2 nanosheets grown vertically to the <111>Cu2-xSe on the surface of Cu2-x Se nanocrystals is observed. Such edge-epitaxial configuration allows the exposure of abundant active edge sites of MoSe2 and enhances the changer transfer between MoSe2 and Cu2-x Se. As a result, the obtained Cu2-x Se-MoSe2 epitaxial heterostructures show excellent HER performance as compared to that of Cu2-x Se@1T/2H-MoSe2 core@shell heterostructure with similar size. This work not only offers a novel approach for designing efficient electrochemical catalysis but also enriches the diversity of TMD-based heterostructures, holding promise for various applications in the future.

4.
Fish Shellfish Immunol ; 142: 109130, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37777099

ABSTRACT

The mitfa gene is a well-known transcription factor associated with microphthalmia and is essential for early melanophore development. However, little is known about how mitfa affects the immune system. Here, we generated a novel mitfa knock-out zebrafish line using the CRISPR/Cas9 system. The mitfa-/- zebrafish exhibited reduced melanin levels compared to the nacre mutant. We investigated the impact on the immune system after exposure to Edwardsiella tarda and bifenazate in zebrafish larvae, and observed that the macrophage numbers were reduced in both treated groups. Remarkably, the expression levels of immune-related genes exhibited significant increases after bacterial challenge or bifenazate exposure in the mitfa-/- zebrafish, except for tlr4 and rela. Furthermore, we conducted xenograft experiments using mouse B16 melanoma cells. Notably, the cancer cells didn't show a high cell migration ratio, implying that the immune system was highly activated after the loss of mifta. Taken together, our findings suggest that mitfa-/- zebrafish serve as a valuable model for investigating the relationship between the immune system and melanocytes, providing new insights into the role of mitfa in immune responses.


Subject(s)
Zebrafish Proteins , Zebrafish , Animals , Mice , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Carbamates/metabolism
5.
Anim Biotechnol ; 34(3): 520-528, 2023 Jun.
Article in English | MEDLINE | ID: mdl-34686116

ABSTRACT

This study was conducted to evaluate the effects of dietary supplementation with Glycyrrhiza polysaccharide (GCP) on growth performance, serum biochemistry, immunity, and egg laying in female quail. 300 1-day-old female quail were sorted into four dietary treatments with five replicate cages of 15 birds each. The basic diet in the four treatment groups was supplemented with 0, 500, 1000 and 1500 mg/kg GCP, and the experiment continued for 80 days. Results showed that dietary supplementation with GCP significantly (p < 0.05) increased average daily gain in a dose-dependent fashion, and decreased (p < 0.05) the feed-to-gain ratio and mortality. The relative weights of the thymus and bursa of Fabricius increased (p < 0.05) linearly with increasing dose of GCP from 0 to 1500 mg/kg on day 20. GCP birds showed higher serum levels of protein, glucose, immunoglobulin A and immunoglobulin M, but lower serum triglycerides (p < 0.05) on day 50. GCP increased (p < 0.05) average laying rate and average egg weight linearly from days 60 to 80, whereas feed to egg ratio was decreased (p < 0.05). Taken together, these results revealed that GCP could improve growth performance, serum biochemistry, immunity, and egg laying in female quail. Therefore, GCP may be a potential replacement for antibiotic growth promoters in poultry.


Subject(s)
Glycyrrhiza , Quail , Female , Animals , Ovum , Dietary Supplements , Diet/veterinary , Polysaccharides/pharmacology , Animal Feed/analysis , Chickens
6.
Anim Biotechnol ; 34(7): 2273-2284, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35714985

ABSTRACT

The aim of this study was to evaluate the effects of dietary Glycyrrhiza polysaccharide (GCP) supplementation on growth performance, intestinal antioxidants, immunity and microbiota in weaned piglets. One hundred and twenty 28-day-old weaned piglets were randomly assigned into five groups (four replicates per group) and fed a basal diet with GCP at 0, 500, 1000, 2000 and 4000 mg/kg for four weeks, respectively. Results showed that 1000 mg/kg GCP improved piglets' ADG and ADFI and reduced FCR (p < .05). Thus, the 0 and 1000 mg/kg GCP dose were selected for subsequent experiments. We found that 1000 mg/GCP increased SOD and T-AOC and decreased MDA in the jejunal mucosa (p < .05). Dietary 1000 mg/kg GCP also resulted in high levels of sIgA, IL-10 and TGF-ß, whereas IL-2 dropped dramatically (p < .05). The relative expression levels of ZO-1, CLDN, OCLDN, TLR-4, IL-10, TGF-ß, Nrf-2, SOD1 and CAT increased in the jejunal mucosa, whereas INF-γ decreased (p < .05). 1000 mg/kg GCP treatment altered the diversity and community composition of cecal microbiota in pigs, with increasing relative abundance of Bacteroidota and Lactobacillus at phylum and genus levels (p < .05), respectively. The results suggested that dietary 1000 mg/kg GCP could improve growth performance and intestinal health of weaned piglets.


Subject(s)
Glycyrrhiza , Microbiota , Animals , Swine , Antioxidants/pharmacology , Antioxidants/metabolism , Dietary Supplements , Interleukin-10 , Polysaccharides/pharmacology , Transforming Growth Factor beta , Glycyrrhiza/metabolism
7.
BMC Musculoskelet Disord ; 23(1): 481, 2022 May 21.
Article in English | MEDLINE | ID: mdl-35597937

ABSTRACT

BACKGROUND: Fracture nonunion/delayed union seriously affects physical and mental health and quality of life. The aim of this study was to evaluate the relative efficacy of different adjuvant treatments for nonunion/delayed union by network meta-analysis. METHODS: A comprehensive search was performed to identify randomized controlled trials (RCTs) evaluating adjuvant treatment in the management of nonunion/delayed union. A network meta-analysis reporting on healing rate, healing time, and adverse effect (AE) outcomes was conducted to assess and compare different interventions. RESULTS: Thirty studies were included in the analysis. For the healing rate outcome, bone marrow aspirate (BMA) + autologous cancellous bone (ACB) was found to be significantly better than ACB alone (odds ratio: 0.12; 95% confidence interval: 0.03, 0.59). In the ranking results, BMA+ platelet-rich plasma (PRP) (96%), BMA + ACB (90%), and BMA alone (82%) showed relative advantages in the healing rate. Low-intensity pulsed ultrasonography (LIUS) intervention significantly shortened the healing time compared with ACB (SMD: -9.26; 95% CI: - 14.64, - 3.87). LIUS (100%), BMA + PRP (74%), and bone morphogenetic proteins (BMPs) (69%) have relative advantages. Compared with the control, electromagnetic field (EMF) (OR: 13.21; 95% CI: 1.58, 110.40) and extracorporeal shock wave (ESWT) (OR: 4.90; 95% CI: 1.38, 17.43) had a higher AE risk. CONCLUSIONS: Among the current intervention strategies, BMA in combination with PRP and ACB can improve the healing rate of nonunion/delayed union. LIUS can significantly shorten the healing time. EMF and ESWT may have a high risk of AE. However, large-scale, well-designed studies are still needed to confirm the results. TRIAL REGISTRATION: Retrospectively registered.


Subject(s)
Fractures, Ununited , Platelet-Rich Plasma , Fracture Healing , Fractures, Ununited/diagnostic imaging , Fractures, Ununited/therapy , Humans , Network Meta-Analysis , Randomized Controlled Trials as Topic , Treatment Outcome
8.
J Vet Pharmacol Ther ; 45(2): 220-225, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34882308

ABSTRACT

As a fluoroquinolone antimicrobial agent, danofloxacin is mainly used to treat avian bacterial and mycoplasma infections. The pharmacokinetic characteristics of danofloxacin are usually explored in healthy animals, while those in endotoxemic broilers are still rare. This study aimed to investigate the pharmacokinetics of danofloxacin in endotoxemic broilers induced by Escherichia coli (E. coli) lipopolysaccharide (LPS) after single oral administration. Ten healthy 5-week-old Arbor Acres (AA) broilers with similar body weight (BW) were randomly and equally divided into LPS and control groups. The LPS group was intravenously injected with an LPS of E. coli O55: B5 at 2.5 mg/kg BW, and the control group was intravenously injected with the same volume of sterile saline. Danofloxacin was administered orally at a dose of 5 mg/kg BW immediately 1 h after the intravenous injection of LPS or sterile saline. Rectal temperature was measured at predetermined times points in all broilers, and plasma and serum samples were taken. The interleukin-6 (IL-6) levels in serum samples were detected by the enzyme-linked immunosorbent assay (ELISA) kits, and danofloxacin concentrations in plasma were detected through the high-performance liquid chromatography (HPLC) method and subjected to a compartmental analysis using Phoenix software. The LPS challenge led to biphasic adaptive changes in broiler body temperature and increased the levels of IL-6. Compared with the control group, LPS treatment significantly prolonged the time to the peak concentration (LPS: 8.75 ± 3.88 h; Control: 3.20 ± 2.20 h). However, there were no significant differences in the other pharmacokinetic parameters between both groups.


Subject(s)
Endotoxemia , Escherichia coli , Animals , Administration, Oral , Chickens , Endotoxemia/drug therapy , Endotoxemia/veterinary , Fluoroquinolones/pharmacokinetics , Lipopolysaccharides
9.
J Craniofac Surg ; 32(1): e90-e92, 2021.
Article in English | MEDLINE | ID: mdl-32675768

ABSTRACT

PURPOSE: The aim of this study was to evaluate the treatment strategy of open reduction and internal fixation (ORIF) for comminuted mandibular fracture (CMF). METHODS: Clinical studies about CMF were collected. Detailed information was extracted, and data were analyzed and merged from included articles. RESULTS: Twelve studies, including 338 patients with CMF, were reported. A total of 256 patients receive ORIF among these 338 patients, and exhibited followed characteristics: ORIF usually were performed several days after injury; the extraoral approach for ORIF was used for 103 patients among 205 patients who received ORIF with definite information about surgical approach; titanium mesh, or reconstruction plate, combined with mini-plates was used in 17 and 194 patients, respectively; intermaxillary fixation (IMF) usually persisted about 1 to 3 weeks after ORIF; most patients exhibited satisfactory effect without serious complications, and the complication rate varied from 0 to 42%. CONCLUSIONS: ORIF strategy for treatment of CMF including: ORIF was a priority choice for CMF. ORIF usually was performed at several days after injury. Reconstruction plate, or titanium mesh, combined with mini-plates was recommended for ORIF surgery. After ORIF, IMF usually was recommended for about 1 to 3 weeks.


Subject(s)
Fractures, Comminuted , Mandibular Fractures , Bone Plates , Fracture Fixation , Fracture Fixation, Internal , Fractures, Comminuted/surgery , Humans , Mandibular Fractures/surgery , Open Fracture Reduction , Retrospective Studies , Treatment Outcome
10.
J Cell Mol Med ; 24(22): 12933-12944, 2020 11.
Article in English | MEDLINE | ID: mdl-33048450

ABSTRACT

MicroRNAs (miRNAs) are emerging biomarkers in biological processes and the role of miR-495-3p has been identified in melanoma, while the detailed molecular mechanisms remain to be further explored. We aim to explore the effect of histone deacetylase 3 (HDAC3) and miR-495-3p on epithelial-mesenchymal transition (EMT) and oncogenicity of melanoma cells by regulating tumour necrosis factor receptor-associated factor 5 (TRAF5). Levels of HDAC3, miR-495-3p and TRAF5 in melanoma tissues and pigmented nevus tissues were determined, and the predictive roles of HDAC3 and miR-495-3p in prognosis of melanoma patients were measured. The melanoma cells were screened and transfected with relative oligonucleotides and plasmids, and the expression of HDAC3, miR-495-3p and TRAF5, and phenotypes of melanoma cells were gauged by a series of assays. The relations between HDAC3 and miR-495-3p, and between miR-495-3p and TRAF5 were confirmed. HDAC3 and TRAF5 were increased while miR-495-3p was decreased in melanoma cells and tissues, and the low expression of miR-495-3p as well as high expression of HDAC3 indicated a poor prognosis of melanoma patients. Inhibited HDAC3 elevated miR-495-3p to suppress EMT and oncogenicity of melanoma cells by reducing TRAF5. HDAC3 particularly bound to miR-495-3p and TRAF5 was the target gene of miR-495-3p. Our results revealed that down-regulated HDAC3 elevates miR-495-3p to suppress malignant phenotypes of melanoma cells by inhibiting TRAF5, thereby repressing EMT progression of melanoma cells. This study may provide novel targets for melanoma treatment.


Subject(s)
Epithelial-Mesenchymal Transition , Histone Deacetylases/metabolism , Melanoma/metabolism , MicroRNAs/metabolism , TNF Receptor-Associated Factor 5/metabolism , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, Reporter , Humans , Lymphatic Metastasis , Male , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Neoplasm Metastasis , Pigmentation , Prognosis , Skin Neoplasms/metabolism
11.
Fish Shellfish Immunol ; 106: 518-525, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32810528

ABSTRACT

Gut microbiota plays a central part in the regulation of multiple host metabolic pathways, such as homeostasis, immunostasis, mucosa permeability, and even brain development. Though, slight known about the function of an individual gut bacterium in zebrafish. In this study, germ-free (GF) and conventionally reared (CV) zebrafish models utilized for studying the role of gut bacteria Vibrio sp. and Aeromonas sp. After the analysis of gut microbial profile in zebrafish male and female at three-month age, Proteobacteria and Fusobacteria dominated the main composition of zebrafish intestinal microflora. However, the relative richness of them was different base on gender variance. Aeromonas sp. and Vibrio sp. belonging to Proteobacteria phylum of bacteria were isolated from zebrafish gut, and their potential capacities to trigger innate immunity were investigated. In gut microbiota absence, the expression levels of the innate immunity genes in the GF group were not significantly changed compared to the CV group. After exposure to Aeromonas sp. and Vibrio sp., the expression levels of myd88, TLRs-, and inflammation-related genes were increased in both GF and CV groups, except tlr2 and NLRs-related genes. However, the expression level of NF-κB and JNK/AP-1 pathway genes were all decreased after exposure to Aeromonas sp. and Vibrio sp. in both GF and CV groups. Interestingly, inflammation-related genes (tnfa, tnfb, and il1ß) were activated in the CV group, and there were not significantly changed in the GF group, indicating that other bacteria were indispensable for Aeromonas sp. or Vibrio sp. to activate the inflammation response. Taken together, this is the first study of gut bacteria Vibrio sp. and Aeromonas sp. prompting the innate immune response using the GF and CV zebrafish model.


Subject(s)
Aeromonas/physiology , Cytokines/genetics , Fish Diseases/immunology , Gastrointestinal Microbiome , Gene Expression , Vibrio/physiology , Zebrafish/immunology , Animals , Female , Fish Diseases/microbiology , Germ-Free Life , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Male , Vibrio Infections/immunology , Vibrio Infections/microbiology , Vibrio Infections/veterinary
12.
Mol Vis ; 20: 1434-42, 2014.
Article in English | MEDLINE | ID: mdl-25352749

ABSTRACT

PURPOSE: We conducted a meta-analysis aiming to evaluate the relationship between a common polymorphism (rs2511989 G>A) in the SERPING1 gene and the risk of age-related macular degeneration (AMD). METHODS: The PubMed, CISCOM, CINAHL, Web of Science, Google Scholar, EBSCO, Cochrane Library, and CBM databases were searched for relevant articles published before November 1, 2013, without any language restrictions. A meta-analysis was conducted using STATA 12.0 software. We calculated a crude odds ratio (OR) with a 95% confidence interval (95% CI) to evaluate the relationships under five genetic models. RESULTS: Seven case-control studies with a total of 7,159 patients with AMD and 5,797 healthy subjects met the inclusion criteria. The results of our meta-analysis showed that the SERPING1 rs2511989 polymorphism might be correlated with an increased risk of AMD (G allele versus A allele: OR = 1.09, 95% CI = 1.03-1.15, p = 0.020; GG + GA versus AA: OR = 1.14, 95% CI = 1.03-1.26, p = 0.014; GG versus GA+AA: OR = 1.10, 95% CI = 1.02-1.19, p = 0.012; GG versus AA: OR = 1.20, 95% CI = 1.07-1.34, p = 0.002; respectively). Results of subgroup analysis by ethnicity revealed positive correlations between the SERPING1 rs2511989 polymorphism and risk of AMD among Caucasians under five genetic models (all p<0.05), but not among Asians (all p>0.05). CONCLUSIONS: The current meta-analysis shows that the SERPING1 rs2511989 polymorphism may have a positive effect on the risk of AMD, especially among Caucasians.


Subject(s)
Complement C1 Inactivator Proteins/genetics , Genetic Predisposition to Disease , Macular Degeneration/genetics , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Alleles , Asian People , Case-Control Studies , Complement C1 Inhibitor Protein , Female , Humans , Macular Degeneration/ethnology , Macular Degeneration/pathology , Male , Middle Aged , Models, Genetic , Odds Ratio , Risk Factors , White People
13.
J Vet Med Sci ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39069486

ABSTRACT

Chlorogenic acid (CGA) is a polyphenol substance contained in many plants, which has good antioxidant activity. This experiment aimed to explore the protective effects of CGA on hydrogen peroxide(H2O2)-induced inflammatory response, apoptosis, and antioxidant capacity of bovine intestinal epithelial cells (BIECs-21) under oxidative stress and its mechanism. The results showed that compared with cells treated with H2O2 alone, CGA pretreatment could improve the viability of BIECs-21. Importantly, Chlorogenic acid pretreatment significantly reduced the formation of malondialdehyde (MDA), lowered reactive oxygen species (ROS) levels, and enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) (P<0.05). In addition, CGA can also improve the intestinal barrier by increasing the abundance of tight junction proteins claudin-1 and occuludin. Meanwhile, CGA can reduce the gene expression levels of pro-inflammatory factors Interleukin-6 (IL-6) and Interleukin-8 (IL-8), increase the expression of anti-inflammatory factor Interleukin-10 (IL-10), promote the expression of the nuclear factor-related factor 2 (Nrf2) signaling pathway, enhance cell antioxidant capacity, and inhibit Nuclear Factor Kappa B (NF-κB) the activation of the signaling pathway reducing the inflammatory response, thereby alleviating inflammation and oxidative stress damage.

14.
Front Microbiol ; 15: 1347053, 2024.
Article in English | MEDLINE | ID: mdl-38525083

ABSTRACT

Aims: The aim of this study was to investigate the effects of chlorogenic acid (CGA) on the intestinal microorganisms and metabolites in broilers during lipopolysaccharide (LPS)-induced immune stress. Methods: A total of 312 one-day-old Arbor Acres (AA) broilers were randomly allocated to four groups with six replicates per group and 13 broilers per replicate: (1) MS group (injected with saline and fed the basal diet); (2) ML group (injected with 0.5 mg LPS/kg and fed the basal diet); (3) MA group (injected with 0.5 mg LPS/kg and fed the basal diet supplemented with 1,000 mg/kg CGA); and (4) MB group (injected with saline and fed the basal diet supplemented with 1,000 mg/kg CGA). Results: The results showed that the abundance of beneficial bacteria such as Bacteroidetes in the MB group was significantly higher than that in MS group, while the abundance of pathogenic bacteria such as Streptococcaceae was significantly decreased in the MB group. The addition of CGA significantly inhibited the increase of the abundance of harmful bacteria such as Streptococcaceae, Proteobacteria and Pseudomonas caused by LPS stress. The population of butyric acid-producing bacteria such as Lachnospiraceae and Coprococcus and beneficial bacteria such as Coriobacteriaceae in the MA group increased significantly. Non-targeted metabonomic analysis showed that LPS stress significantly upregulated the 12-keto-tetrahydroleukotriene B4, riboflavin and mannitol. Indole-3-acetate, xanthurenic acid, L-formylkynurenine, pyrrole-2-carboxylic acid and L-glutamic acid were significantly down-regulated, indicating that LPS activated inflammation and oxidation in broilers, resulting in intestinal barrier damage. The addition of CGA to the diet of LPS-stimulated broilers significantly decreased 12-keto-tetrahydro-leukotriene B4 and leukotriene F4 in arachidonic acid metabolism and riboflavin and mannitol in ABC transporters, and significantly increased N-acetyl-L-glutamate 5-semialdehyde in the biosynthesis of amino acids and arginine, The presence of pyrrole-2-carboxylic acid in D-amino acid metabolism and the cecal metabolites, indolelactic acid, xanthurenic acid and L-kynurenine, indicated that CGA could reduce the inflammatory response induced by immune stress, enhance intestinal barrier function, and boost antioxidant capacity. Conclusion: We conclude that CGA can have a beneficial effect on broilers by positively altering the balance of intestinal microorganisms and their metabolites to inhibit intestinal inflammation and barrier damage caused by immune stress.

15.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38539874

ABSTRACT

The aim of this study was to investigate the effects of aspirin eugenol ester (AEE) on liver oxidative damage and energy metabolism in immune-stressed broilers. In total, 312 broilers were divided into 4 groups (saline, LPS, SAEE, and LAEE). Broilers in the saline and LPS groups were fed a basal diet; the SAEE and LAEE groups had an added 0.01% AEE in their diet. Broilers in the LPS and LAEE groups were injected with lipopolysaccharides, while the saline and SAEE groups were injected with saline. Results showed that AEE increased the body weight, average daily gain, and average daily feed intake, as well as decreasing the feed conversion ratio of immune-stressed broilers. AEE protects against oxidative damage in immune-stressed broiler livers by elevating the total antioxidant capacity, superoxide dismutase activity, and glutathione S-transferase alpha 3 (GSTA3) and glutaredoxin 2 (GLRX2) expression, while decreasing malondialdehyde content. AEE lessened inflammation by reducing prostaglandin-F2α production and prostaglandin-endoperoxide synthase 2 (PTGS2) and interleukin-1beta (IL-1ß) expression. AEE decreased oxidative phosphorylation rates by increasing succinic acid levels and lowering both adenosine diphosphate (ADP) levels and ceroid lipofuscinosis neuronal 5 (CLN5) expression. AEE modulated the metabolism of phenylalanine, tyrosine, lipids, and cholesterol by reducing the phenyllactate and L-arogenate levels, lowering dopachrome tautomerase (DCT) and apolipoprotein A4 (APOA4) expression, and increasing phenylpyruvic acid and dopa decarboxylase (DDC) expression. In summary, AEE can effectively alleviate liver oxidative damage and energy metabolism disorders in immune-stressed broilers.

16.
Front Vet Sci ; 11: 1401909, 2024.
Article in English | MEDLINE | ID: mdl-38872795

ABSTRACT

Aims: The aim of this study was to investigate the effects of aspirin eugenol ester (AEE) on ileal immune function in broilers under lipopolysaccharide (LPS)-induced immune stress. Methods: Two hundred and forty one-day-old male Arbor Acres chicks were randomly divided into four groups (saline, LPS, saline + AEE and LPS + AEE) with six replicates of ten broilers each. The saline group and LPS group were fed the normal diet, while the other two groups received normal diet plus 0.1 g/kg AEE. Broilers in the LPS and LPS + AEE groups were injected intraperitoneally with 0.5 mg/kg B.W LPS in saline for seven consecutive days beginning at 14 days of age, while broilers in the saline and saline + AEE groups were injected with saline only. Results: The results showed that AEE improved the ileal morphology and increased the ratio of villus height to crypt depth of immune-stressed broilers. LPS-induced immune stress significantly reduced the expression of the genes for the tight junction proteins occludin, zonula occludens-1 (ZO-1), claudin-1 and claudin-2, in the ileum, while AEE significantly up-regulated the expression of these genes. Compared with the saline group, the LPS-treated chickens showed significantly increased mRNA expression of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), and microsomal Prostaglandin E Synthesase-1 (mPGES-1) in the ileum, while they were significantly decreased by AEE supplementation. In addition, analysis of the ileal bacterial composition showed that compared with saline and LPS + AEE groups, the proportion of Firmicutes and Lactobacillus in the LPS group was lower, while the proportion of Proteobacteria and Escherichia-Shigella was higher. Similarly, Line Discriminant Analysis Effect Size (LEfSe) analysis showed that compared with the LPS group, Brevibacillus was dominant in the saline group, while the LPS + AEE group was rich in Rhizobium, Lachnoclostridium, Ruminococcaceae, Faecalibacterium, Negativibacillus, Oscillospiraceae, and Flavonifractor. Conclusion: These results indicate that dietary supplementation with 0.1 g/kg AEE could protect the intestinal health by improving the intestinal villus morphology, enhancing the expression of tight junction genes and alleviating inflammation to resist the immune stress caused by LPS stimulation in broilers, and the mechanism may involve COX-2-related signal transduction and improved intestinal microbiota composition.

17.
Poult Sci ; 103(7): 103825, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772090

ABSTRACT

This study was designed to examine the impact of aspirin eugenol ester (AEE) on the growth performance, serum antioxidant capacity, jejunal barrier function, and cecal microbiota of broilers raised under stressful high density (HD) stocking conditions compared with normal density broilers (ND). A total of 432 one-day-old AA+ male broilers were randomly divided into 4 groups: normal density (ND, 14 broilers /m2), high density (HD, 22 broilers /m2), ND + AEE, and HD + AEE. The results of the study revealed a significant decrease in the growth performance of broiler chickens as a result of HD stress (P < 0.05). The total antioxidant capacity (T-AOC) in serum demonstrated a significant decrease (P < 0.05) at both 28 and 35 d. Conversely, the serum level of malondialdehyde (MDA) exhibited a significant increase (P < 0.05). Dietary supplementation of AEE resulted in a significant elevation (P < 0.05) of serum GSH-PX, SOD and T-AOC activity at both 28 and 35 d. Moreover, exposure to HD stress resulted in a considerable reduction in the height of intestinal villi and mRNA expression of tight junction proteins in the jejunum, along with, a significant elevation in the mRNA expression of inflammatory cytokines (P < 0.05). However, the administration of AEE reversed the adverse effects of HD-induced stress on villus height and suppressed the mRNA expression of the pro-inflammatory genes, COX-2 and mPGES-1. Additionally, the exposure to HD stress resulted in a substantial reduction in the α-diversity of cecal microbiota and disruption in the equilibrium of intestinal microbial composition, with a notable decrease in the relative abundance of Bacteroides and Faecalibacterium (P < 0.05). In contrast, the addition of AEE to the feed resulted in a notable increase in the relative abundance of Phascolarctobacterium and enhanced microbial diversity (P < 0.05). The inclusion of AEE in the diet has been demonstrated to enhance intestinal integrity and growth performance of broilers by effectively mitigating disruptions in gut microbiota induced by HD stress.


Subject(s)
Animal Feed , Antioxidants , Aspirin , Cecum , Chickens , Diet , Dietary Supplements , Eugenol , Gastrointestinal Microbiome , Animals , Chickens/growth & development , Male , Gastrointestinal Microbiome/drug effects , Antioxidants/metabolism , Diet/veterinary , Cecum/microbiology , Cecum/drug effects , Aspirin/administration & dosage , Aspirin/pharmacology , Aspirin/analogs & derivatives , Animal Feed/analysis , Dietary Supplements/analysis , Eugenol/analogs & derivatives , Eugenol/administration & dosage , Eugenol/pharmacology , Random Allocation , Animal Husbandry , Inflammation/veterinary , Inflammation/chemically induced
18.
Res Vet Sci ; 167: 105114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171137

ABSTRACT

The primary aim of this study was to investigate the impact of varying levels of dietary Glycyrrhiza polysaccharides (GPS) on the health status of broiler chickens. A total of 288 1-day-old Arbor Acres broilers were randomly assigned to four groups with six replicates, consisting of 12 chickens in each replicate. The control group (CON) was provided with the basal diet, while the experimental groups were administered 300, 600, and 900 mg/kg of GPS in the basal diet for 42 days. The results demonstrated a significant enhancement in average daily gain (ADG) as a result of GPS supplementation (P < 0.05). The dietary GPS significantly elevated total antioxidation capability (T-AOC) and the activity of antioxidant enzymes (P < 0.05), while effectively reducing the levels of malondialdehyde (MDA) in the serum and liver (P < 0.05). Administration of GPS notably inhibited the toll-like receptor 4 (TLR4) signaling pathway (P < 0.05), decreased interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) levels (P < 0.05), and increased IL-4 and IL-10 levels (P < 0.05). Additionally, the expression of crucial regulators involved in liver lipid metabolism, including sterol regulatory element binding protein 1 (SREBP-1), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) were significantly reduced (P < 0.05). In contrast, the expression of peroxisome proliferator-activated receptor alpha (PPAR-α) was significantly enhanced in the GPS-supplemented groups (P < 0.05). In conclusion, the supplementation of GPS positively influenced the growth performance, the anti-inflammatory and antioxidant capacity of the liver, as well as liver lipid metabolism in broilers.


Subject(s)
Antioxidants , Glycyrrhiza , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Chickens/metabolism , Dietary Supplements , Diet/veterinary , Liver/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , Anti-Inflammatory Agents/pharmacology , Interleukin-6 , Glycyrrhiza/metabolism , Animal Feed/analysis
19.
Article in English | MEDLINE | ID: mdl-38403007

ABSTRACT

The emergence of graphene quantum dots (GQDs) expands the use of graphene derivatives in nanomedicine for its direct therapeutic applications in treating neurodegeneration, inflammation, metabolic dysfunction, and among others. Nevertheless, the biosafety assessment of GQDs remains deficient mostly because of the diverse surface characteristics of the nanoparticles. Our prior work demonstrated that GQDs can induce strong thigmotactic effects in zebrafish larvae over a wide range of concentrations, yet the underlying metabolic mechanisms remain largely unknown. In this study, we conducted a further exploration about graphene oxide quantum dots (GOQDs) for its potential neurotoxic effect on the behaviors of zebrafish larvae by combining neurotransmitter-targeted metabolomics with locomotion analysis. After continuous exposure to a concentration gradient of GOQDs (12.5 - 25 - 50 - 100 - 200 µg/mL) for 7 days, the thigmotactic activities of zebrafish larvae were observed across all exposure concentrations relative to the control group, while the basal locomotor activities, including distance moved and average velocity, were significantly changed by low concentrations of GOQDs. Targeted metabolomics was performed using zebrafish larvae at 7 days post-fertilization (dpf) that were exposed to 12.5 and 200 µg/mL, both of which were found to perturb the kynurenine pathway by regulating the levels of kynurenine, 3-hydroxyanthranilic acid (3-HAA), and quinolinic acid (QA). Furthermore, the thigmotaxis of larval fish induced by GOQDs during exposure could be counteracted by supplementing Ro-61-8048, an agonist acting on kynurenine 3-monooxygenase (KMO). In conclusion, our study establishes the involvement of the kynurenine pathway in GOQDs-induced thigmotaxis, which is independent of the transcriptional modulation of glutamate receptor families.


Subject(s)
Graphite , Quantum Dots , Animals , Zebrafish , Graphite/toxicity , Quantum Dots/toxicity , Kynurenine/pharmacology , Larva
20.
Animals (Basel) ; 13(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36670842

ABSTRACT

Chlorogenic acids (CGA) are widely used as feed additives for their ability to improve growth performance and intestinal health in poultry. However, whether dietary CGAs could reverse the impaired intestinal condition caused by high stocking density (HD) in broiler chickens is unknown. We determined the effect of dietary CGA on growth, serum antioxidant levels, jejunum barrier function, and the microbial community in the cecum of broilers raised under normal (ND) or HD conditions. HD stress significantly decreased growth and body weight, which was restored by CGA. The HD group showed increased serum malondialdehyde, an oxidative byproduct, and decreased SOD and GSH-Px activity. CGA reduced malondialdehyde and restored antioxidant enzyme activity. HD stress also significantly decreased jejunal villus length and increased crypt depth. Compared with ND, the expression of tight-junction genes was significantly decreased in the HD group, but this decrease was reversed by CGA. HD also significantly upregulated TNF-α. Compared with ND, the cecal microbiota in the HD group showed lower alpha diversity with increases in the harmful bacteria Turicibacter and Shigella. This change was altered in the HD + CGA group, with enrichment of Blautia, Akkermansia, and other beneficial bacteria. These results demonstrated that HD stress decreased serum antioxidant capacity, inhibited the development of jejunal villi, and downregulated expression of tight-junction genes, which increased intestinal permeability during the rapid growth period (21 to 35 days). Dietary CGA enhanced antioxidant capacity, improved intestinal integrity, and enhanced beneficial gut bacteria in chickens raised under HD conditions.

SELECTION OF CITATIONS
SEARCH DETAIL