Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nature ; 572(7768): 230-234, 2019 08.
Article in English | MEDLINE | ID: mdl-31391559

ABSTRACT

Groundwater in sub-Saharan Africa supports livelihoods and poverty alleviation1,2, maintains vital ecosystems, and strongly influences terrestrial water and energy budgets3. Yet the hydrological processes that govern groundwater recharge and sustainability-and their sensitivity to climatic variability-are poorly constrained4,5. Given the absence of firm observational constraints, it remains to be seen whether model-based projections of decreased water resources in dry parts of the region4 are justified. Here we show, through analysis of multidecadal groundwater hydrographs across sub-Saharan Africa, that levels of aridity dictate the predominant recharge processes, whereas local hydrogeology influences the type and sensitivity of precipitation-recharge relationships. Recharge in some humid locations varies by as little as five per cent (by coefficient of variation) across a wide range of annual precipitation values. Other regions, by contrast, show roughly linear precipitation-recharge relationships, with precipitation thresholds (of roughly ten millimetres or less per day) governing the initiation of recharge. These thresholds tend to rise as aridity increases, and recharge in drylands is more episodic and increasingly dominated by focused recharge through losses from ephemeral overland flows. Extreme annual recharge is commonly associated with intense rainfall and flooding events, themselves often driven by large-scale climate controls. Intense precipitation, even during years of lower overall precipitation, produces some of the largest years of recharge in some dry subtropical locations. Our results therefore challenge the 'high certainty' consensus regarding decreasing water resources4 in such regions of sub-Saharan Africa. The potential resilience of groundwater to climate variability in many areas that is revealed by these precipitation-recharge relationships is essential for informing reliable predictions of climate-change impacts and adaptation strategies.


Subject(s)
Groundwater/analysis , Rain , Africa South of the Sahara , Desert Climate , Droughts/statistics & numerical data
3.
J Environ Manage ; 288: 112384, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33773213

ABSTRACT

Groundwater resources in South Asian cities are facing immense stress due to over-extraction leading to environmental, social and economic instabilities. The perennial mega rivers of Himalayas form the lifeline for South Asia, underpinning food and water security for a large population both directly and indirectly through exchange with groundwater systems. The present study delineates the spatio-temporal variation in patterns and processes of sub-hourly to annual-scale hydrological exchanges between the Ganges and its adjoining highly exploited aquifer in a urban-peri urban reach. Multivariate statistical analyses established river water-groundwater interaction in this region with ~40% loading of first principal component, i.e river water during monsoon on the shallow aquifer. The part of the aquifer detached from the main confined aquifer show an influence of precipitation (the second principal component) with loading of ~90%. Again the part of the aquifer suffering infiltration of local surface water bodies show effect of precipitation with a second principal loading of ~80%. Fourier transformation is used in the hydrograph to remove influence of heavy urbanization on the hydrographs. This study proves that the phenomenon of infiltrating river water during monsoon plays a primary role in controlling aquifer storage although contaminating the aquifer simultaneously. However, during pre and post-monsoon the flow path reversal helps in maintaining river baseflow. Cross-correlation between the river and piezometric series show increased delay of pressure head propagation of the infiltrating river waterfront, with increasing distance. These observations are also substantiated by stable isotope signatures. The present study provides an understanding of potential groundwater vulnerability resulting from waste water and irrigational contamination through river water intrusion which would eventually lead the government to implement proper water and environmental management policies towards availability of long-term sustainable water resources for the residents.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , Asia , Cities , Environmental Monitoring , Rivers , Seasons , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; : 177062, 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39454784

ABSTRACT

New groundwater development is a likely way to meet growing global water demand but needs careful management. To help inform the sustainable development of groundwater resources, a novel method based on the maximum safe installable power for water pumping systems and the maximum safe remaining installable power (considering current abstraction) is developed. The proposed model couples energy, technology and hydrogeological parameters, and is then developed to compute the maximum power that can be safely installed per km2 without exceeding a maximum annual pumpable volume, calculated through available recharge and storage. The model is applied to estimate the maximum safe installable power across Africa with a 0.2-degree resolution, using available energy and hydrogeological data. Constrained by recharge (considering that 25 % of the annual recharge is available for utilization), the maximum safe installable power ranges between 0 and 9960 W/km2 across Africa with regions such as the Congo Basin (~340 W/km2), and western Africa between the Ivory Coast and Nigeria (~230 W/km2) identified as having high potential for sustainable pumping system development. Constrained by storage (considering that 0.1 % of storage can be withdrawn per year), it ranges between 0 and 13,425 W/km2 highlighting the ability to harness storage for pumping system development in the large aquifers of Northern Sahara (~8720 W/km2). When considering limitations posed by both groundwater recharge and aquifer storage (considering that 25 % of the annual recharge and 0.1 % of storage can be withdrawn per year), along with current groundwater withdrawal, 93 % of the maximum safe installable power remains still installable on average across Africa. Nevertheless, 2 % of the locations are estimated to be already experiencing overexploitation, particularly in Sudan, northern Africa, and northeastern South Africa. These findings provide a novel and adaptable way to examine water security, which can assist institutions in targeting investments to meet water demand sustainably.

5.
Environ Pollut ; 362: 124983, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293652

ABSTRACT

This study presents a first combined assessment of emerging organic contaminants (EOC) and antimicrobial resistance (AMR) indicators in the South Indian city of Bengaluru from multiple sources, addressing a knowledge gap on EOCs and AMR occurrences and relationships in different water sources in urban India. A unique approach in this study was to combine the detection of EOCs with an assessment of the AMR-indicating class 1 integron-integrase gene, intI1. Twenty-five samples collected from groundwater, local surface waters, and tap water imported from the Cauvery Basin were screened for 1499 EOCs. A total of 125 EOCs were detected at concentrations per compound of up to 314 µg/L. Concentrations for a range of contaminants were higher than those previously detected in Indian groundwaters. High concentrations of Per- and polyfluoroalkyl substances (PFAS) were detected with up to 1.8 µg/L in surface water and up to 0.9 µg/L in groundwater. Calculated risk quotients indicated potential AMR development caused by high concentrations of azithromycin, fluconazole, and sulfanilamide in surface waters that have little protection against sewage inflows. Surface waters that have recently undergone environmental restoration (e.g., removing silted bottom layers and enhancing protection against encroachments and sewage inflows) had lower EOC detections and risk of AMR development. Specific EOC detections, e.g., the ubiquitous detection of the sweetener sucralose (in use since ∼2000), indicated recent groundwater recharge and a contribution of imported Cauvery River water for recharge. This study highlights the need for monitoring and water protection, the role of EOCs as potential drivers of AMR, and the success of surface water protection measures to improve freshwater quality.

6.
Sci Total Environ ; 858(Pt 3): 159765, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36309251

ABSTRACT

Groundwater is an essential resource for natural and human systems throughout the world and the rates at which aquifers are recharged constrain sustainable levels of consumption. However, recharge estimates from global-scale models regularly disagree with each other and are rarely compared to ground-based estimates. We compare long-term mean annual recharge and recharge ratio (annual recharge/annual precipitation) estimates from eight global models with over 100 ground-based estimates in Africa. We find model estimates of annual recharge and recharge ratio disagree significantly across most of Africa. Furthermore, similarity to ground-based estimates between models also varies considerably and inconsistently throughout the different landscapes of Africa. Models typically showed both positive and negative biases in most landscapes, which made it challenging to pinpoint how recharge prediction by global-scale models can be improved. However, global-scale models which reflected stronger climatic controls on their recharge estimates compared more favourably to ground-based estimates. Given this significant uncertainty in recharge estimates from current global-scale models, we stress that groundwater recharge prediction across Africa, for both research investigations and operational management, should not rely upon estimates from a single model but instead consider the distribution of estimates from different models. Our work will be of particular interest to decision makers and researchers who consider using such recharge outputs to make groundwater governance decisions or investigate groundwater security especially under the potential impact of climate change.


Subject(s)
Humans , Africa
7.
Environ Sci Technol ; 46(24): 13193-201, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23153272

ABSTRACT

Recent observations that subsurface bacteria quickly adsorb metal contaminants raise concerns that they may enhance metal transport, given the high mobility of bacteria themselves. However, metal adsorption to bacteria is also reversible, suggesting that mobility within porous medium will depend on the interplay between adsorption-desorption kinetics and thermodynamic driving forces for adsorption. Till now there has been no systematic investigation of these important interactions. This study investigates the thermodynamic and kinetic controls of cotransport of Pantoea agglomerans cells and Zn in quartz and iron-oxide coated sand (IOCS) packed columns. Batch kinetic studies show that significant Zn sorption on IOCS takes place within two hours. Adsorption onto P. agglomerans surfaces reaches equilibrium within 30 min. Experiments in flow through quartz sand systems demonstrate that bacteria have negligible effect on zinc mobility, regardless of ionic strength and pH conditions. Zinc transport exhibits significant retardation in IOCS columns at high pH in the absence of cells. Yet, when mobile bacteria (non attached) are passed through simultaneously with zinc, no facilitated transport is observed. Adsorption onto cells becomes significant and plays a role in mobile metal speciation only once the IOCS is saturated with zinc. This suggests that IOCS exhibits stronger affinity for Zn than cell surfaces. However, when bacteria and Zn are preassociated on entering the column, zinc transport is initially facilitated. Subsequently, zinc partly desorbs from the cells and redistributes onto the IOCS as a result of the higher thermodynamic affinity for IOCS.


Subject(s)
Ferric Compounds/chemistry , Pantoea/cytology , Pantoea/metabolism , Silicon Dioxide/chemistry , Zinc/chemistry , Adsorption , Biodegradation, Environmental , Kinetics , Movement , Thermodynamics
8.
Sci Total Environ ; 750: 141284, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33182170

ABSTRACT

Regular monitoring of drinking water quality is vital to identify contamination of potable water supplies. Testing for microbial contamination is important to prevent transmission of waterborne disease, but establishing and maintaining a water quality monitoring programme requires sustained labour, consumables and resources. In low resource settings such as developing countries, this can prove difficult, but measuring microbial contamination is listed as a requirement of reaching the UN's Sustainable Development Goal 6 for water and sanitation. A nine-month water quality monitoring programme was conducted in rural Malawi to assess the suitability of tryptophan-like fluorescence (TLF), an emerging method for rapidly detecting microbial contamination, as a drinking water quality monitoring tool. TLF data was compared with thermotolerant coliforms (TTCs, E. coli) and inorganic hydrochemical parameters. A large (n = 235) temporal dataset was collected from five groundwater drinking water sources, with samples collected once or twice weekly depending on the season. The results show that TLF can indicate a broader contamination risk but is not as sensitive to short term variability when compared to other faecal indicators. This is likely due to a broad association of TLF with elevated DOC concentrations from a range of different sources. Elevated TLF may indicate preferential conditions for the persistence of TTCs and/or E. coli, but not necessarily a public health risk from microbial contamination. TLF is therefore a more precautionary risk indicator than microbial culturing techniques and could prove useful as a high-level screening tool for initial risk assessment. For widespread use of TLF to be successful, standardisation of TLF values associated with different levels of risk is required, however, this study highlights the difficulties of equating TLF thresholds to TTCs or E. coli data because of the influence of DOC/HLF on the TLF signal.


Subject(s)
Drinking Water , Environmental Monitoring , Escherichia coli , Fluorescence , Humans , Malawi , Tryptophan , Water Microbiology , Water Quality , Water Supply
9.
Water Res ; 206: 117734, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34655933

ABSTRACT

Faecal indicator organisms (FIOs) are limited in their ability to protect public health from the microbial contamination of drinking water because of their transience and time required to deliver a result. We evaluated alternative rapid, and potentially more resilient, approaches against a benchmark FIO of thermotolerant coliforms (TTCs) to characterise faecal contamination over 14 months at 40 groundwater sources in a Ugandan town. Rapid approaches included: in-situ tryptophan-like fluorescence (TLF), humic-like fluorescence (HLF), turbidity; sanitary inspections; and total bacterial cells by flow cytometry. TTCs varied widely in six sampling visits: a third of sources tested both positive and negative, 50% of sources had a range of at least 720 cfu/100 mL, and a two-day heavy rainfall event increased median TTCs five-fold. Using source medians, TLF was the best predictor in logistic regression models of TTCs ≥10 cfu/100 mL (AUC 0.88) and best correlated to TTC enumeration (ρs 0.81), with HLF performing similarly. Relationships between TLF or HLF and TTCs were stronger in the wet season than the dry season, when TLF and HLF were instead more associated with total bacterial cells. Source rank-order between sampling rounds was considerably more consistent, according to cross-correlations, using TLF or HLF (min ρs 0.81) than TTCs (min ρs 0.34). Furthermore, dry season TLF and HLF cross-correlated more strongly (ρs 0.68) than dry season TTCs (ρs 0.50) with wet season TTCs, when TTCs were elevated. In-situ TLF or HLF are more rapid and resilient indicators of faecal contamination risk than TTCs.


Subject(s)
Drinking Water , Groundwater , Environmental Monitoring , Feces , Spectrometry, Fluorescence , Water Microbiology
10.
Sci Total Environ ; 744: 140674, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32755770

ABSTRACT

Faecally-contaminated drinking water is a risk to human health, with the greatest risks to those living in developing countries. UN Sustainable Development Goal 6 aims to address this issue. Tryptophan-like fluorescence (TLF) shows potential as a rapid method for detecting microbial contamination in drinking water, which could reduce the spread of waterborne diseases. This study is the first to investigate the effectiveness of TLF for a large-scale survey using a randomised, spot-sampling approach. The large-scale survey took place in Malawi, sub-Saharan Africa, in the dry season (n = 183). A subset of sources were revisited at the end of the following wet season (n = 41). The effectiveness of TLF was assessed by comparing TLF results to thermotolerant coliforms (TTC), humic-like fluorescence (HLF), inorganic hydrochemical data and sanitary risk scores. The most prominent differences in microbial water quality were observed between source types, with little variation between districts and seasons. TLF, TTCs, turbidity and sanitary risk scores were all elevated at alternative sources (shallow wells and tap stands) compared to hand-pumped boreholes. In the dry season, 18% of hand-pumped boreholes showed TTC contamination, which increase to 21% in the wet season. Groundwater recharge processes are likely responsible for seasonal variability of inorganic hydrochemistry at hand-pumped boreholes. TLF was able to distinguish no and low WHO risk classes (TTC 0-9 cfu/100 mL) from medium, high and very high risk classes (TTC 10 - >1000 cfu/100 mL). TLF failed to distinguish between no and low risk classes, which limits the use of TLF for assessing water quality to drinking water standards. This dataset indicates that HLF may raise baseline TLF for samples with low TLF values, increasing false positives. Therefore, TLF is better suited as a rapid high-level water quality screening tool to assess moderate and high levels of faecal contamination.


Subject(s)
Drinking Water , Environmental Monitoring , Humans , Malawi , Seasons , Surveys and Questionnaires , Tryptophan , Water Microbiology , Water Quality , Water Supply
11.
Nat Commun ; 11(1): 1279, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152271

ABSTRACT

Climate change and urbanization can increase pressures on groundwater resources, but little is known about how groundwater quality will change. Here, we use a global synthesis (n = 9,404) to reveal the drivers of dissolved organic carbon (DOC), which is an important component of water chemistry and substrate for microorganisms that control biogeochemical reactions. Dissolved inorganic chemistry, local climate and land use explained ~ 31% of observed variability in groundwater DOC, whilst aquifer age explained an additional 16%. We identify a 19% increase in DOC associated with urban land cover. We predict major groundwater DOC increases following changes in precipitation and temperature in key areas relying on groundwater. Climate change and conversion of natural or agricultural areas to urban areas will decrease groundwater quality and increase water treatment costs, compounding existing constraints on groundwater resources.

12.
Sci Total Environ ; 738: 139419, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32521357

ABSTRACT

We explore in-situ fluorescence spectroscopy as an instantaneous indicator of total bacterial abundance and faecal contamination in drinking water. Eighty-four samples were collected outside of the recharge season from groundwater-derived water sources in Dakar, Senegal. Samples were analysed for tryptophan-like (TLF) and humic-like (HLF) fluorescence in-situ, total bacterial cells by flow cytometry, and potential indicators of faecal contamination such as thermotolerant coliforms (TTCs), nitrate, and in a subset of 22 samples, dissolved organic carbon (DOC). Significant single-predictor linear regression models demonstrated that total bacterial cells were the most effective predictor of TLF, followed by on-site sanitation density; TTCs were not a significant predictor. An optimum multiple-predictor model of TLF incorporated total bacterial cells, nitrate, nitrite, on-site sanitation density, and sulphate (r2 0.68). HLF was similarly related to the same parameters as TLF, with total bacterial cells being the best correlated (ρs 0.64). In the subset of 22 sources, DOC clustered with TLF, HLF, and total bacterial cells, and a linear regression model demonstrated HLF was the best predictor of DOC (r2 0.84). The intergranular nature of the aquifer, timing of the study, and/or non-uniqueness of the signal to TTCs can explain the significant associations between TLF/HLF and indicators of faecal contamination such as on-site sanitation density and nutrients but not TTCs. The bacterial population that relates to TLF/HLF is likely to be a subsurface community that develops in-situ based on the availability of organic matter originating from faecal sources. In-situ fluorescence spectroscopy instantly indicates a drinking water source is impacted by faecal contamination but it remains unclear how that relates specifically to microbial risk in this setting.


Subject(s)
Carbon , Water Microbiology , Environmental Monitoring , Fluorescence , Senegal , Spectrometry, Fluorescence
13.
Sci Rep ; 10(1): 15379, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32958794

ABSTRACT

Fluorescent natural organic matter at tryptophan-like (TLF) and humic-like fluorescence (HLF) peaks is associated with the presence and enumeration of faecal indicator bacteria in groundwater. We hypothesise, however, that it is predominantly extracellular material that fluoresces at these wavelengths, not bacterial cells. We quantified total (unfiltered) and extracellular (filtered at < 0.22 µm) TLF and HLF in 140 groundwater sources across a range of urban population densities in Kenya, Malawi, Senegal, and Uganda. Where changes in fluorescence occurred following filtration they were correlated with potential controlling variables. A significant reduction in TLF following filtration (ΔTLF) was observed across the entire dataset, although the majority of the signal remained and thus considered extracellular (median 96.9%). ΔTLF was only significant in more urbanised study areas where TLF was greatest. Beneath Dakar, Senegal, ΔTLF was significantly correlated to total bacterial cells (ρs 0.51). No significant change in HLF following filtration across all data indicates these fluorophores are extracellular. Our results suggest that TLF and HLF are more mobile than faecal indicator bacteria and larger pathogens in groundwater, as the predominantly extracellular fluorophores are less prone to straining. Consequently, TLF/HLF are more precautionary indicators of microbial risks than faecal indicator bacteria in groundwater-derived drinking water.


Subject(s)
Feces/microbiology , Fluorescent Dyes/chemistry , Groundwater/microbiology , Tryptophan/chemistry , Africa , Drinking Water/chemistry , Drinking Water/microbiology , Environmental Monitoring/methods , Fluorescence , Groundwater/chemistry , Water Microbiology , Water Supply/methods
14.
Clin Cancer Res ; 25(5): 1574-1587, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30559170

ABSTRACT

PURPOSE: To determine whether inhibition of mTOR kinase-mediated signaling represents a valid therapeutic approach for chronic lymphocytic leukemia (CLL). EXPERIMENTAL DESIGN: Stratification of mTOR activity was carried out in patients with primary CLL samples and an aggressive CLL-like mouse model. The potency of dual mTOR inhibitor AZD8055 to induce apoptosis in primary CLL cells was assessed in the presence/absence of B-cell receptor (BCR) ligation. Furthermore, we addressed the molecular and functional impact of dual mTOR inhibition in combination with BTK inhibitor ibrutinib. RESULTS: Differential regulation of basal mTORC1 activity was observed in poor prognostic CLL samples, with elevated p4EBP1T37/46 and decreased p70S6 kinase activity, suggesting that dual mTORC1/2 inhibitors may exhibit improved response in poor prognostic CLL compared with rapalogs. AZD8055 treatment of primary CLL cells significantly reduced CLL survival in vitro compared with rapamycin, preferentially targeting poor prognostic subsets and overcoming BCR-mediated survival advantages. Furthermore, AZD8055, and clinical analog AZD2014, significantly reduced CLL tumor load in mice. AKT substrate FOXO1, while overexpressed in CLL cells of poor prognostic patients in LN biopsies, peripheral CLL cells, and mouse-derived CLL-like cells, appeared to be inactive. AZD8055 treatment partially reversed FOXO1 inactivation downstream of BCR crosslinking, significantly inhibiting FOXO1T24 phosphorylation in an mTORC2-AKT-dependent manner, to promote FOXO1 nuclear localization, activity, and FOXO1-mediated gene regulation. FOXO1 activity was further significantly enhanced on combining AZD8055 with ibrutinib. CONCLUSIONS: Our studies demonstrate that dual mTOR inhibitors show promise as future CLL therapies, particularly in combination with ibrutinib.


Subject(s)
Forkhead Box Protein O1/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Receptors, Antigen, B-Cell/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Synergism , Female , Forkhead Box Protein O1/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Male , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice , Mice, Transgenic , Prognosis , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Treatment Outcome , Xenograft Model Antitumor Assays
15.
Sci Total Environ ; 622-623: 1250-1257, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29890592

ABSTRACT

We assess the use of fluorescent dissolved organic matter at excitation-emission wavelengths of 280nm and 360nm, termed tryptophan-like fluorescence (TLF), as an indicator of faecally contaminated drinking water. A significant logistic regression model was developed using TLF as a predictor of thermotolerant coliforms (TTCs) using data from groundwater- and surface water-derived drinking water sources in India, Malawi, South Africa and Zambia. A TLF threshold of 1.3ppb dissolved tryptophan was selected to classify TTC contamination. Validation of the TLF threshold indicated a false-negative error rate of 15% and a false-positive error rate of 18%. The threshold was unsuccessful at classifying contaminated sources containing <10 TTC cfu per 100mL, which we consider the current limit of detection. If only sources above this limit were classified, the false-negative error rate was very low at 4%. TLF intensity was very strongly correlated with TTC concentration (ρs=0.80). A higher threshold of 6.9ppb dissolved tryptophan is proposed to indicate heavily contaminated sources (≥100 TTC cfu per 100mL). Current commercially available fluorimeters are easy-to-use, suitable for use online and in remote environments, require neither reagents nor consumables, and crucially provide an instantaneous reading. TLF measurements are not appreciably impaired by common intereferents, such as pH, turbidity and temperature, within typical natural ranges. The technology is a viable option for the real-time screening of faecally contaminated drinking water globally.


Subject(s)
Drinking Water/microbiology , Environmental Monitoring/methods , Tryptophan/chemistry , Water Microbiology , Water Pollutants/analysis , Drinking Water/chemistry , Feces/chemistry , Fluorescence , India , Malawi , South Africa , Tryptophan/analysis , Zambia
16.
PLoS Med ; 7(11): e1000361, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-21085692

Subject(s)
Health , Water Supply , Humans
17.
Ground Water ; 43(2): 259-69, 2005.
Article in English | MEDLINE | ID: mdl-15819947

ABSTRACT

Many people in sub-Saharan Africa have to rely on meager water resources within mudstones for their only water supply. Although mudstones have been extensively researched for their low permeability behavior, little research has been undertaken to examine their ability to provide sustainable water supplies. To investigate the factors controlling the occurrence of usable ground water in mudstone environments, an area of Cretaceous mudstones in southeastern Nigeria was studied over a 3 yr period. Transmissivity (T) variations in a range of mudstone environments were studied. The investigations demonstrate that within the top 40 m of mudstones, transmissivity can be sufficient to develop village water supplies (T > 1 m2/d). Transmissivity is controlled by two factors: low-grade metamorphism and the presence of other, subordinate, lithologies within the mudstones. Largely unaltered mudstones (early diagenetic zone), comprising mainly smectite clays, are mostly unfractured and have a low T of < 0.1 m2/d. Mudstones that have undergone limited metamorphism (late diagenetic zone) comprise mixed layered illite/smectite clays, and ground water is found in widely spaced fracture zones (T > 1 m2/d in large fracture zones; T < 0.1 m2/d away from fracture zones). Mudstones that have been further altered and approach the anchizone comprise illite clays, are pervasively fractured, and have the highest transmissivity values (T > 4 m2/d). Dolerite intrusions in unaltered, smectitic mudstones are highly fractured with transmissivity in the range of 1 < T < 60 m2/d. Thin limestone and sandstone layers can also enhance transmissivity sufficiently to provide community water supplies.


Subject(s)
Geology , Water Supply , Environmental Monitoring , Geological Phenomena , Nigeria , Permeability , Soil
18.
J Colloid Interface Sci ; 359(2): 481-6, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21543082

ABSTRACT

Several recent studies have made use of continuous acid-base titration data to describe the surface chemistry of bacterial cells as a basis for accurately modelling metal adsorption to bacteria and other biomaterials of potential industrial importance. These studies do not share a common protocol; rather they titrate in different pH ranges and they use different stability criteria to define equilibration time during titration. In the present study we investigate the kinetics of bacterial titrations and test the effect they have on the derivation of functional group concentrations and acidity constants. We titrated suspensions of Pantoea agglomerans by varying the equilibration time between successive titrant additions until stability of 0.1 or 0.001 mV s(-1) was attained. We show that under longer equilibration times, titration results are less reproducible and suspensions exhibit marginally higher buffering. Fluorescence images suggest that cell lysis is not responsible for these effects. Rather, high DOC values and titration reversibility hysterisis after long equilibration times suggest that variability in buffering is due to the presence of bacterial exudates, as demonstrated by titrating supernatants separated from suspensions of different equilibration times. It is recommended that an optimal equilibration time is always determined with variable stability control and preliminary reversibility titration experiments.


Subject(s)
Pantoea/chemistry , Buffers , Kinetics , Potentiometry , Titrimetry
19.
Ground Water ; 48(2): 246-56, 2010.
Article in English | MEDLINE | ID: mdl-19341371

ABSTRACT

Drought in Africa has been extensively researched, particularly from meteorological, agricultural, and food security perspectives. However, the impact of drought on water security, particularly ground water dependent rural water supplies, has received much less attention. Policy responses have concentrated on food needs, and it has often been difficult to mobilize resources for water interventions, despite evidence that access to safe water is a serious and interrelated concern. Studies carried out in Ghana, Malawi, South Africa, and Ethiopia highlight how rural livelihoods are affected by seasonal stress and longer-term drought. Declining access to food and water is a common and interrelated problem. Although ground water plays a vital role in buffering the effects of rainfall variability, water shortages and difficulties in accessing water that is available can affect domestic and productive water uses, with knock-on effects on food consumption and production. Total depletion of available ground water resources is rarely the main concern. A more common scenario is a spiral of water insecurity as shallow water sources fail, additional demands are put on remaining sources, and mechanical failures increase. These problems can be planned for within normal development programs. Water security mapping can help identify vulnerable areas, and changes to monitoring systems can ensure early detection of problems. Above all, increasing the coverage of ground water-based rural water supplies, and ensuring that the design and siting of water points is informed by an understanding of hydrogeological conditions and user demand, can significantly increase the resilience of rural communities to climate variability.


Subject(s)
Conservation of Natural Resources , Droughts , Water Movements , Africa , Environmental Monitoring , Fresh Water
20.
Sci Total Environ ; 408(11): 2378-86, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20206375

ABSTRACT

To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO(3)(-)) were found in 21% of the samples, manganese (Mn) and fluoride (F(-)) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about pound1200 and pound3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or "pay-as-you-fetch". The annual fee was between pound0.3-21, while the boreholes had a water collection fee of pound0.07-0.7/m(3), many wells were free. Interestingly, the most expensive water ( pound2.9-3.5/m(3)) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment. Those issues need to be addressed in combination with water quality, coordinated water supply provision and possible treatment to ensure sustainability of improved water resources.


Subject(s)
Water Pollutants, Chemical/analysis , Water Purification/methods , Water Supply/analysis , Capital Financing , Environmental Monitoring , Ghana , Metals, Heavy/analysis , Public Health , Water Purification/economics , Water Supply/economics
SELECTION OF CITATIONS
SEARCH DETAIL