Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Dev ; 34(15-16): 1089-1105, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32616519

ABSTRACT

The circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alternative splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic ß cells that are perturbed in Clock-/- and Bmal1-/- ß-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant ß cells, including transcripts encoding Cask (calcium/calmodulin-dependent serine protein kinase) and Madd (MAP kinase-activating death domain). Depletion of THRAP3 restores expression of the long isoforms of Cask and Madd, and mimicking exon skipping in these transcripts through antisense oligonucleotide delivery in wild-type islets reduces glucose-stimulated insulin secretion. Finally, we identify shared networks of alternatively spliced exocytic genes from islets of rodent models of diet-induced obesity that significantly overlap with clock mutants. Our results establish a role for pre-mRNA alternative splicing in ß-cell function across the sleep/wake cycle.


Subject(s)
Alternative Splicing , Circadian Clocks/genetics , Exocytosis , Glucose/metabolism , Insulin Secretion/genetics , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/physiology , Animals , CLOCK Proteins/genetics , CLOCK Proteins/physiology , Cells, Cultured , Death Domain Receptor Signaling Adaptor Proteins/genetics , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanylate Kinases/genetics , Guanylate Kinases/metabolism , Homeostasis , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Male , Mice, Inbred C57BL , Nuclear Proteins/physiology , Obesity/genetics , Obesity/metabolism , Synaptosomal-Associated Protein 25/genetics , Synaptosomal-Associated Protein 25/metabolism , Transcription Factors/physiology
2.
Nucleic Acids Res ; 52(W1): W398-W406, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38587201

ABSTRACT

We introduce MetaboAnalyst version 6.0 as a unified platform for processing, analyzing, and interpreting data from targeted as well as untargeted metabolomics studies using liquid chromatography - mass spectrometry (LC-MS). The two main objectives in developing version 6.0 are to support tandem MS (MS2) data processing and annotation, as well as to support the analysis of data from exposomics studies and related experiments. Key features of MetaboAnalyst 6.0 include: (i) a significantly enhanced Spectra Processing module with support for MS2 data and the asari algorithm; (ii) a MS2 Peak Annotation module based on comprehensive MS2 reference databases with fragment-level annotation; (iii) a new Statistical Analysis module dedicated for handling complex study design with multiple factors or phenotypic descriptors; (iv) a Causal Analysis module for estimating metabolite - phenotype causal relations based on two-sample Mendelian randomization, and (v) a Dose-Response Analysis module for benchmark dose calculations. In addition, we have also improved MetaboAnalyst's visualization functions, updated its compound database and metabolite sets, and significantly expanded its pathway analysis support to around 130 species. MetaboAnalyst 6.0 is freely available at https://www.metaboanalyst.ca.


Subject(s)
Algorithms , Metabolomics , Software , Tandem Mass Spectrometry , Metabolomics/methods , Chromatography, Liquid , Humans , Databases, Factual
3.
Diabetologia ; 67(7): 1368-1385, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38503901

ABSTRACT

AIMS/HYPOTHESIS: Protein kinase CK2 acts as a negative regulator of insulin expression in pancreatic beta cells. This action is mainly mediated by phosphorylation of the transcription factor pancreatic and duodenal homeobox protein 1 (PDX1). In pancreatic alpha cells, PDX1 acts in a reciprocal fashion on glucagon (GCG) expression. Therefore, we hypothesised that CK2 might positively regulate GCG expression in pancreatic alpha cells. METHODS: We suppressed CK2 kinase activity in αTC1 cells by two pharmacological inhibitors and by the CRISPR/Cas9 technique. Subsequently, we analysed GCG expression and secretion by real-time quantitative RT-PCR, western blot, luciferase assay, ELISA and DNA pull-down assays. We additionally studied paracrine effects on GCG secretion in pseudoislets, isolated murine islets and human islets. In vivo, we examined the effect of CK2 inhibition on blood glucose levels by systemic and alpha cell-specific CK2 inhibition. RESULTS: We found that CK2 downregulation reduces GCG secretion in the murine alpha cell line αTC1 (e.g. from 1094±124 ng/l to 459±110 ng/l) by the use of the CK2-inhibitor SGC-CK2-1. This was due to a marked decrease in Gcg gene expression through alteration of the binding of paired box protein 6 (PAX6) and transcription factor MafB to the Gcg promoter. The analysis of the underlying mechanisms revealed that both transcription factors are displaced by PDX1. Ex vivo experiments in isolated murine islets and pseudoislets further demonstrated that CK2-mediated reduction in GCG secretion was only slightly affected by the higher insulin secretion after CK2 inhibition. The kidney capsule transplantation model showed the significance of CK2 for GCG expression and secretion in vivo. Finally, CK2 downregulation also reduced the GCG secretion in islets isolated from humans. CONCLUSIONS/INTERPRETATION: These novel findings not only indicate an important function of protein kinase CK2 for proper GCG expression but also demonstrate that CK2 may be a promising target for the development of novel glucose-lowering drugs.


Subject(s)
Casein Kinase II , Glucagon-Secreting Cells , Glucagon , Homeodomain Proteins , Casein Kinase II/metabolism , Casein Kinase II/genetics , Animals , Glucagon/metabolism , Mice , Humans , Glucagon-Secreting Cells/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Male , Cell Line , Insulin/metabolism
5.
Diabetologia ; 66(4): 674-694, 2023 04.
Article in English | MEDLINE | ID: mdl-36633628

ABSTRACT

AIMS/HYPOTHESIS: Genome-wide studies have uncovered multiple independent signals at the RREB1 locus associated with altered type 2 diabetes risk and related glycaemic traits. However, little is known about the function of the zinc finger transcription factor Ras-responsive element binding protein 1 (RREB1) in glucose homeostasis or how changes in its expression and/or function influence diabetes risk. METHODS: A zebrafish model lacking rreb1a and rreb1b was used to study the effect of RREB1 loss in vivo. Using transcriptomic and cellular phenotyping of a human beta cell model (EndoC-ßH1) and human induced pluripotent stem cell (hiPSC)-derived beta-like cells, we investigated how loss of RREB1 expression and activity affects pancreatic endocrine cell development and function. Ex vivo measurements of human islet function were performed in donor islets from carriers of RREB1 type 2 diabetes risk alleles. RESULTS: CRISPR/Cas9-mediated loss of rreb1a and rreb1b function in zebrafish supports an in vivo role for the transcription factor in beta cell mass, beta cell insulin expression and glucose levels. Loss of RREB1 also reduced insulin gene expression and cellular insulin content in EndoC-ßH1 cells and impaired insulin secretion under prolonged stimulation. Transcriptomic analysis of RREB1 knockdown and knockout EndoC-ßH1 cells supports RREB1 as a novel regulator of genes involved in insulin secretion. In vitro differentiation of RREB1KO/KO hiPSCs revealed dysregulation of pro-endocrine cell genes, including RFX family members, suggesting that RREB1 also regulates genes involved in endocrine cell development. Human donor islets from carriers of type 2 diabetes risk alleles in RREB1 have altered glucose-stimulated insulin secretion ex vivo, consistent with a role for RREB1 in regulating islet cell function. CONCLUSIONS/INTERPRETATION: Together, our results indicate that RREB1 regulates beta cell function by transcriptionally regulating the expression of genes involved in beta cell development and function.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Animals , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , DNA-Binding Proteins/metabolism , Gene Expression , Glucose/metabolism , Induced Pluripotent Stem Cells/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Transcription Factors/genetics , Zebrafish/genetics
6.
Diabet Med ; 39(12): e14984, 2022 12.
Article in English | MEDLINE | ID: mdl-36264270

ABSTRACT

BACKGROUND: Tetraspanin-7 (Tspan7) is an islet autoantigen involved in autoimmune type 1 diabetes and known to regulate ß-cell L-type Ca2+ channel activity. However, the role of Tspan7 in pancreatic ß-cell function is not yet fully understood. METHODS: Histological analyses were conducted using immunostaining. Whole-body metabolism was tested using glucose tolerance test. Islet hormone secretion was quantified using static batch incubation or dynamic perifusion. ß-cell transmembrane currents, electrical activity and exocytosis were measured using whole-cell patch-clamping and capacitance measurements. Gene expression was studied using mRNA-sequencing and quantitative PCR. RESULTS: Tspan7 is expressed in insulin-containing granules of pancreatic ß-cells and glucagon-producing α-cells. Tspan7 knockout mice (Tspan7y/- mouse) exhibit reduced body weight and ad libitum plasma glucose but normal glucose tolerance. Tspan7y/- islets have normal insulin content and glucose- or tolbutamide-stimulated insulin secretion. Depolarisation-triggered Ca2+ current was enhanced in Tspan7y/- ß-cells, but ß-cell electrical activity and depolarisation-evoked exocytosis were unchanged suggesting that exocytosis was less sensitive to Ca2+ . TSPAN7 knockdown (KD) in human pseudo-islets led to a significant reduction in insulin secretion stimulated by 20 mM K+ . Transcriptomic analyses show that TSPAN7 KD in human pseudo-islets correlated with changes in genes involved in hormone secretion, apoptosis and ER stress. Consistent with rodent ß-cells, exocytotic Ca2+ sensitivity was reduced in a human ß-cell line (EndoC-ßH1) following Tspan7 KD. CONCLUSION: Tspan7 is involved in the regulation of Ca2+ -dependent exocytosis in ß-cells. Its function is more significant in human ß-cells than their rodent counterparts.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Animals , Humans , Mice , Exocytosis/physiology , Glucose/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Tetraspanins/genetics , Tetraspanins/metabolism
7.
Diabetologia ; 63(10): 2095-2101, 2020 10.
Article in English | MEDLINE | ID: mdl-32894320

ABSTRACT

Efforts to phenotype pancreatic islets have contributed tremendously to our present understanding of endocrine function and diabetes. A continued evolution in approaches to study islet physiology is important given the need to establish reference points for mature islet functionality, understanding biological variation amongst individuals and cells, and the ongoing appreciation of the role for islets in diabetes susceptibility. Recent efforts in islet biology have focused on technological improvements in imaging, molecular profiling and data analysis, along with a push for enhanced transparency and reporting. The integration of these approaches within a classical islet physiology framework, and approaches to link these data with in vivo human phenotypes, will be critical as we move towards a better understanding of islet function in health and disease. Here we discuss what we feel are important issues and useful approaches to consider as we move forward as a field in islet and beta cell phenotyping. Graphical abstract.


Subject(s)
Insulin Secretion , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Calcium/metabolism , Genotype , Humans , Insulin-Secreting Cells/physiology , Islets of Langerhans/physiology , Phenotype , Single-Cell Analysis , Transcriptome
8.
Am J Hum Genet ; 100(2): 238-256, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28132686

ABSTRACT

Genetic variants near ARAP1 (CENTD2) and STARD10 influence type 2 diabetes (T2D) risk. The risk alleles impair glucose-induced insulin secretion and, paradoxically but characteristically, are associated with decreased proinsulin:insulin ratios, indicating improved proinsulin conversion. Neither the identity of the causal variants nor the gene(s) through which risk is conferred have been firmly established. Whereas ARAP1 encodes a GTPase activating protein, STARD10 is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer protein family. By integrating genetic fine-mapping and epigenomic annotation data and performing promoter-reporter and chromatin conformational capture (3C) studies in ß cell lines, we localize the causal variant(s) at this locus to a 5 kb region that overlaps a stretch-enhancer active in islets. This region contains several highly correlated T2D-risk variants, including the rs140130268 indel. Expression QTL analysis of islet transcriptomes from three independent subject groups demonstrated that T2D-risk allele carriers displayed reduced levels of STARD10 mRNA, with no concomitant change in ARAP1 mRNA levels. Correspondingly, ß-cell-selective deletion of StarD10 in mice led to impaired glucose-stimulated Ca2+ dynamics and insulin secretion and recapitulated the pattern of improved proinsulin processing observed at the human GWAS signal. Conversely, overexpression of StarD10 in the adult ß cell improved glucose tolerance in high fat-fed animals. In contrast, manipulation of Arap1 in ß cells had no impact on insulin secretion or proinsulin conversion in mice. This convergence of human and murine data provides compelling evidence that the T2D risk associated with variation at this locus is mediated through reduction in STARD10 expression in the ß cell.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Insulin/metabolism , Phosphoproteins/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Alleles , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cloning, Molecular , Diabetes Mellitus, Type 2/blood , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression Regulation , Genetic Variation , Homeostasis , Humans , Insulin/blood , Insulin Secretion , Insulin-Secreting Cells/metabolism , Liver/metabolism , Mice , Proinsulin/blood , Proinsulin/metabolism , Quantitative Trait Loci , Transcriptome
9.
Diabetologia ; 61(4): 775-779, 2018 04.
Article in English | MEDLINE | ID: mdl-29330559

ABSTRACT

Post-translational modification of proteins contributes to the control of cell function and survival. The balance of these in insulin-producing pancreatic beta cells is important for the maintenance of glucose homeostasis. Protection from the damaging effects of reactive oxygen species is required for beta cell survival, but if this happens at the expense of insulin secretory function then the ability of islets to respond to changing metabolic conditions may be compromised. In this issue of Diabetologia, He et al ( https://doi.org/10.1007/s00125-017-4523-9 ) show that post-translational attachment of small ubiquitin-like modifier (SUMO) to target lysine residues (SUMOylation) strikes an important balance between the protection of beta cells from oxidative stress and the maintenance of insulin secretory function. They show that SUMOylation is required to stabilise nuclear factor erythroid 2-related factor 2 (NRF2) and increase antioxidant gene expression. Decreasing SUMOylation in beta cells impairs their antioxidant capacity, causes cell death, hyperglycaemia, and increased sensitivity to streptozotocin-induced diabetes, while increasing SUMOylation is protective. However, this protection from overt diabetes occurs in concert with glucose intolerance due to impaired beta cell function. A possible role for SUMOylation as a key factor balancing beta cell protection vs beta cell responsiveness to metabolic cues is discussed in this Commentary.


Subject(s)
Islets of Langerhans , Sumoylation , Humans , Insulin , Insulin-Secreting Cells , Male , Protein Processing, Post-Translational
10.
PLoS Genet ; 11(12): e1005694, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26624892

ABSTRACT

The intersection of genome-wide association analyses with physiological and functional data indicates that variants regulating islet gene transcription influence type 2 diabetes (T2D) predisposition and glucose homeostasis. However, the specific genes through which these regulatory variants act remain poorly characterized. We generated expression quantitative trait locus (eQTL) data in 118 human islet samples using RNA-sequencing and high-density genotyping. We identified fourteen loci at which cis-exon-eQTL signals overlapped active islet chromatin signatures and were coincident with established T2D and/or glycemic trait associations. At some, these data provide an experimental link between GWAS signals and biological candidates, such as DGKB and ADCY5. At others, the cis-signals implicate genes with no prior connection to islet biology, including WARS and ZMIZ1. At the ZMIZ1 locus, we show that perturbation of ZMIZ1 expression in human islets and beta-cells influences exocytosis and insulin secretion, highlighting a novel role for ZMIZ1 in the maintenance of glucose homeostasis. Together, these findings provide a significant advance in the mechanistic insights of T2D and glycemic trait association loci.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Insulin/genetics , Transcription Factors/genetics , Diabetes Mellitus, Type 2/pathology , Exons , Gene Expression Regulation , Genome-Wide Association Study , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Quantitative Trait Loci/genetics , Signal Transduction , Transcription Factors/biosynthesis
11.
Biochim Biophys Acta Gen Subj ; 1861(2): 313-322, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27871838

ABSTRACT

BACKGROUND: Although insulin resistance (IR) is a key factor in the pathogenesis of type 2 diabetes (T2D), the precise role of insulin in the development of IR remains unclear. Therefore, we investigated whether chronic basal insulin infusion is causative in the development of glucose intolerance. METHODS: Normoglycemic lean rats surgically instrumented with i.v. catheters were infused with insulin (3mU/kg/min) or physiological saline for 6weeks. At infusion-end, plasma insulin levels along with glucose tolerance were assessed. RESULTS: Six weeks of insulin infusion induced glucose intolerance and impaired insulin response in healthy rats. Interestingly, the effects of chronic insulin infusion were completely normalized following 24h withdrawal of exogenous insulin and plasma insulin response to glucose challenge was enhanced, suggesting improved insulin secretory capacity. As a result of this finding, we assessed whether the effects of insulin therapy followed by a washout could ameliorate established glucose intolerance in obese rats. Obese rats were similarly instrumented and infused with insulin or physiological saline for 7days followed by 24h washout. Seven day-insulin therapy in obese rats significantly improved glucose tolerance, which was attributed to improved insulin secretory capacity and improved insulin signaling in liver and skeletal muscle. CONCLUSION: Moderate infusion of insulin alone is sufficient to cause glucose intolerance and impair endogenous insulin secretory capacity, whereas short-term, intensive insulin therapy followed by insulin removal effectively improves glucose tolerance, insulin response and peripheral insulin sensitivity in obese rats. GENERAL SIGNIFICANCE: New insight into the link between insulin and glucose intolerance may optimize T2D management.


Subject(s)
Blood Glucose/drug effects , Glucose/metabolism , Insulin/administration & dosage , Obesity/blood , Obesity/metabolism , Thinness/blood , Thinness/metabolism , Animals , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Glucose Intolerance/blood , Glucose Tolerance Test/methods , Insulin Resistance/physiology , Liver/drug effects , Liver/metabolism , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Rats , Rats, Sprague-Dawley
12.
Diabetes Obes Metab ; 19 Suppl 1: 90-94, 2017 09.
Article in English | MEDLINE | ID: mdl-28880482

ABSTRACT

After multiple decades of investigation, the precise mechanisms involved in fuel-stimulated insulin secretion are still being revealed. One avenue for gaining deeper knowledge is to apply emergent tools of "metabolomics," involving mass spectrometry and nuclear magnetic resonance-based profiling of islet cells in their fuel-stimulated compared with basal states. The current article summarizes recent insights gained from application of metabolomics tools to the specific process of glucose-stimulated insulin secretion, revealing 2 new mechanisms that may provide targets for improving insulin secretion in diabetes.


Subject(s)
Biomedical Research/methods , Islets of Langerhans/metabolism , Metabolomics/methods , Models, Biological , Animals , Biomedical Research/trends , Exocytosis , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/enzymology , Metabolomics/trends , Secretory Pathway
13.
Proc Natl Acad Sci U S A ; 110(41): 16480-5, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24065825

ABSTRACT

We previously cataloged putative autocrine/paracrine signaling loops in pancreatic islets, including factors best known for their roles in axon guidance. Emerging evidence points to nonneuronal roles for these factors, including the Slit-Roundabout receptor (Robo) family, in cell growth, migration, and survival. We found SLIT1 and SLIT3 in both beta cells and alpha cells, whereas SLIT2 was predominantly expressed in beta cells. ROBO1 and ROBO2 receptors were detected in beta and alpha cells. Remarkably, even modest knockdown of Slit production resulted in significant beta-cell death, demonstrating a critical autocrine/paracrine survival role for this pathway. Indeed, recombinant SLIT1, SLIT2, and SLIT3 decreased serum deprivation, cytokine, and thapsigargin-induced cell death under hyperglycemic conditions. SLIT treatment also induced a gradual release of endoplasmic reticulum luminal Ca(2+), suggesting a unique molecular mechanism capable of protecting beta cells from endoplasmic reticulum stress-induced apoptosis. SLIT treatment was also associated with rapid actin remodeling. SLITs potentiated glucose-stimulated insulin secretion and increased the frequency of glucose-induced Ca(2+) oscillations. These observations point to unexpected roles for local Slit secretion in the survival and function of pancreatic beta cells. Because diabetes results from a deficiency in functional beta-cell mass, these studies may contribute to therapeutic approaches for improving beta-cell survival and function.


Subject(s)
Cell Survival/physiology , Diabetes Mellitus/physiopathology , Glycoproteins/metabolism , Insulin-Secreting Cells/physiology , Insulin/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Signal Transduction/physiology , Actins/metabolism , Analysis of Variance , Animals , Benzimidazoles , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Humans , Immunoblotting , Insulin Secretion , Insulin-Secreting Cells/metabolism , Mice , Mice, Inbred C57BL , RNA, Small Interfering/genetics , Reverse Transcriptase Polymerase Chain Reaction , Roundabout Proteins
14.
Diabetologia ; 58(7): 1513-22, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25874445

ABSTRACT

AIMS/HYPOTHESIS: Precise regulation of insulin secretion by the pancreatic beta cell is essential for the maintenance of glucose homeostasis. Insulin secretory activity is initiated by the stepwise breakdown of ambient glucose to increase cellular ATP via glycolysis and mitochondrial respiration. Knockout of Lkb1, the gene encoding liver kinase B1 (LKB1) from the beta cell in mice enhances insulin secretory activity by an undefined mechanism. Here, we sought to determine the molecular basis for how deletion of Lkb1 promotes insulin secretion. METHODS: To explore the role of LKB1 on individual steps in the insulin secretion pathway, we used mitochondrial functional analyses, electrophysiology and metabolic tracing coupled with by gas chromatography and mass spectrometry. RESULTS: Beta cells lacking LKB1 surprisingly display impaired mitochondrial metabolism and lower ATP levels following glucose stimulation, yet compensate for this by upregulating both uptake and synthesis of glutamine, leading to increased production of citrate. Furthermore, under low glucose conditions, Lkb1(-/-) beta cells fail to inhibit acetyl-CoA carboxylase 1 (ACC1), the rate-limiting enzyme in lipid synthesis, and consequently accumulate NEFA and display increased membrane excitability. CONCLUSIONS/INTERPRETATION: Taken together, our data show that LKB1 plays a critical role in coupling glucose metabolism to insulin secretion, and factors in addition to ATP act as coupling intermediates between feeding cues and secretion. Our data suggest that beta cells lacking LKB1 could be used as a system to identify additional molecular events that connect metabolism to cellular excitation in the insulin secretion pathway.


Subject(s)
Glucose/metabolism , Insulin/metabolism , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinases , Acetyl-CoA Carboxylase/metabolism , Animals , Fatty Acids, Nonesterified/blood , Glucose/deficiency , Glucose/pharmacology , Glutamine/biosynthesis , Glutamine/metabolism , Hypoglycemic Agents/pharmacology , Insulin Secretion , Insulin-Secreting Cells , Membrane Potential, Mitochondrial/drug effects , Metabolomics , Mice , Mice, Knockout , Mitochondria/metabolism , RNA, Small Interfering/biosynthesis , RNA, Small Interfering/genetics
15.
Diabetologia ; 58(7): 1503-12, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25930156

ABSTRACT

AIMS/HYPOTHESIS: There are potential advantages to the low-temperature (-196 °C) banking of isolated islets, including the maintenance of viable islets for future research. We therefore assessed the in vitro and in vivo function of islets cryopreserved for nearly 20 years. METHODS: Human islets were cryopreserved from 1991 to 2001 and thawed between 2012 and 2014. These were characterised by immunostaining, patch-clamp electrophysiology, insulin secretion, transcriptome analysis and transplantation into a streptozotocin (STZ)-induced mouse model of diabetes. RESULTS: The cryopreservation time was 17.6 ± 0.4 years (n = 43). The thawed islets stained positive with dithizone, contained insulin-positive and glucagon-positive cells, and displayed levels of apoptosis and transcriptome profiles similar to those of freshly isolated islets, although their insulin content was lower. The cryopreserved beta cells possessed ion channels and exocytotic responses identical to those of freshly isolated beta cells. Cells from a subset of five donors demonstrated similar perifusion insulin secretion profiles pre- and post-cryopreservation. The transplantation of cryopreserved islets into the diabetic mice improved their glucose tolerance but did not completely normalise their blood glucose levels. Circulating human insulin and insulin-positive grafts were detectable at 10 weeks post-transplantation. CONCLUSIONS/INTERPRETATION: We have demonstrated the potential for long-term banking of human islets for research, which could enable the use of tissue from a large number of donors with future technologies to gain new insight into diabetes.


Subject(s)
Cryopreservation , Islets of Langerhans/physiology , Tissue Banks , Adult , Animals , Diabetes Mellitus, Experimental/therapy , Exocytosis/physiology , Female , Homeodomain Proteins/genetics , Humans , Insulin/blood , Insulin/metabolism , Insulin-Secreting Cells/physiology , Ion Channels/metabolism , Islets of Langerhans Transplantation , Male , Mice , Mice, Knockout , Patch-Clamp Techniques , Transcriptome/genetics
16.
J Biol Chem ; 289(46): 32109-32120, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25288806

ABSTRACT

PI3Kγ, a G-protein-coupled type 1B phosphoinositol 3-kinase, exhibits a basal glucose-independent activity in ß-cells and can be activated by the glucose-dependent insulinotropic polypeptide (GIP). We therefore investigated the role of the PI3Kγ catalytic subunit (p110γ) in insulin secretion and ß-cell exocytosis stimulated by GIP. We inhibited p110γ with AS604850 (1 µmol/liter) or knocked it down using an shRNA adenovirus or siRNA duplex in mouse and human islets and ß-cells. Inhibition of PI3Kγ blunted the exocytotic and insulinotropic response to GIP receptor activation, whereas responses to the glucagon-like peptide-1 or the glucagon-like peptide-1 receptor agonist exendin-4 were unchanged. Downstream, we find that GIP, much like glucose stimulation, activates the small GTPase protein Rac1 to induce actin remodeling. Inhibition of PI3Kγ blocked these effects of GIP. Although exendin-4 could also stimulate actin remodeling, this was not prevented by p110γ inhibition. Finally, forced actin depolymerization with latrunculin B restored the exocytotic and secretory responses to GIP during PI3Kγ inhibition, demonstrating that the loss of GIP-induced actin depolymerization was indeed limiting insulin exocytosis.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gene Expression Regulation, Enzymologic , Glucose/metabolism , Insulin/metabolism , Actins/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Dioxoles/chemistry , Electrophysiology , Exocytosis , Humans , Inhibitory Concentration 50 , Insulin Secretion , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neuropeptides/metabolism , Protein Structure, Tertiary , Thiazolidinediones/chemistry , rac1 GTP-Binding Protein/metabolism
17.
J Biol Chem ; 289(19): 13335-46, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24675076

ABSTRACT

It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in ß-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that ß-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 ß-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-ß-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion.


Subject(s)
Glucose/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Mitochondria/metabolism , Pyruvic Acid/metabolism , Acrylates/pharmacology , Adenosine Diphosphate/genetics , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Cell Line, Tumor , Female , Gene Knockdown Techniques , Glucose/genetics , Humans , Insulin/genetics , Insulin Secretion , Insulin-Secreting Cells/cytology , Male , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Monocarboxylic Acid Transporters , NADP/genetics , NADP/metabolism , Rats , Rats, Sprague-Dawley
18.
Diabetologia ; 57(12): 2535-45, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25208758

ABSTRACT

AIMS/HYPOTHESIS: There is evidence that ATP acts as an autocrine signal in beta cells but the receptors and pathways involved are incompletely understood. Here we investigate the receptor subtype(s) and mechanism(s) mediating the effects of ATP on human beta cells. METHODS: We examined the effects of purinergic agonists and antagonists on membrane potential, membrane currents, intracellular Ca(2+) ([Ca(2+)]i) and insulin secretion in human beta cells. RESULTS: Extracellular application of ATP evoked small inward currents (3.4 ± 0.7 pA) accompanied by depolarisation of the membrane potential (by 14.4 ± 2.4 mV) and stimulation of electrical activity at 6 mmol/l glucose. ATP increased [Ca(2+)]i by stimulating Ca(2+) influx and evoking Ca(2+) release via InsP3-receptors in the endoplasmic reticulum (ER). ATP-evoked Ca(2+) release was sufficient to trigger exocytosis in cells voltage-clamped at -70 mV. All effects of ATP were mimicked by the P2Y(1/12/13) agonist ADP and the P2Y1 agonist MRS-2365, whereas the P2X(1/3) agonist α,ß-methyleneadenosine-5-triphosphate only had a small effect. The P2Y1 antagonists MRS-2279 and MRS-2500 hyperpolarised glucose-stimulated beta cells and lowered [Ca(2+)]i in the absence of exogenously added ATP and inhibited glucose-induced insulin secretion by 35%. In voltage-clamped cells subjected to action potential-like stimulation, MRS-2279 decreased [Ca(2+)]i and exocytosis without affecting Ca(2+) influx. CONCLUSIONS/INTERPRETATION: These data demonstrate that ATP acts as a positive autocrine signal in human beta cells by activating P2Y1 receptors, stimulating electrical activity and coupling Ca(2+) influx to Ca(2+) release from ER stores.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Exocytosis/physiology , Insulin-Secreting Cells/metabolism , Receptors, Purinergic P2Y1/metabolism , Adenosine Diphosphate/analogs & derivatives , Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Calcium Signaling/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Exocytosis/drug effects , Humans , Insulin-Secreting Cells/drug effects , Membrane Potentials/drug effects , Membrane Potentials/physiology
19.
Diabetologia ; 57(2): 383-91, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24190582

ABSTRACT

AIMS/HYPOTHESIS: Genome-wide association studies have revealed an association of the transcription factor ETS variant gene 5 (ETV5) with human obesity. However, its role in glucose homeostasis and energy balance is unknown. METHODS: Etv5 knockout (KO) mice were monitored weekly for body weight (BW) and food intake. Body composition was measured at 8 and 16 weeks of age. Glucose metabolism was studied, and glucose-stimulated insulin secretion was measured in vivo and in vitro. RESULTS: Etv5 KO mice are smaller and leaner, and have a reduced BW and lower fat mass than their wild-type controls on a chow diet. When exposed to a high-fat diet, KO mice are resistant to diet-induced BW gain. Despite a greater insulin sensitivity, KO mice have profoundly impaired glucose tolerance associated with impaired insulin secretion. Morphometric analysis revealed smaller islets and a reduced beta cell size in the pancreatic islets of Etv5 KO mice. Knockdown of ETV5 in an insulin-secreting cell line or beta cells from human donors revealed intact mitochondrial and Ca(2+) channel activity, but reduced insulin exocytosis. CONCLUSION/INTERPRETATION: This work reveals a critical role for ETV5 in specifically regulating insulin secretion both in vitro and in vivo.


Subject(s)
C-Peptide/metabolism , DNA-Binding Proteins/metabolism , Exocytosis/physiology , Glucose/metabolism , Homeostasis/physiology , Insulin/metabolism , Transcription Factors/metabolism , Animals , Body Composition , Body Weight , Diet, High-Fat , Eating , Genome-Wide Association Study , Glucose Tolerance Test , Insulin Resistance , Insulin Secretion , Mice , Mice, Knockout
20.
Diabetologia ; 57(9): 1889-98, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24981769

ABSTRACT

AIMS/HYPOTHESIS: Diabetes mellitus represents a significant burden on the health of the global population. Both type 1 and type 2 diabetes share a common feature of a reduction in functional beta cell mass. A newly discovered ubiquitination molecule HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase (HUWE1 [also known as MULE or ARF-BP1]) is a critical regulator of p53-dependent apoptosis. However, its role in islet homeostasis is not entirely clear. METHODS: We generated mice with pancreas-specific deletion of Huwe1 using a Cre-loxP recombination system driven by the Pdx1 promoter (Pdx1cre (+) Huwe1 (fl/fl)) to assess the in vivo role of HUWE1 in the pancreas. RESULTS: Targeted deletion of Huwe1 in the pancreas preferentially activated p53-mediated beta cell apoptosis, leading to reduced beta cell mass and diminished insulin exocytosis. These defects were aggravated by ageing, with progressive further decline in insulin secretion and glucose homeostasis in older mice. Intriguingly, Huwe1 deletion provided protection against genotoxicity, such that Pdx1cre (+) Huwe1 (fl/fl) mice were resistant to multiple-low-dose-streptozotocin-induced beta cell apoptosis and diabetes. CONCLUSION/INTERPRETATION: HUWE1 expression in the pancreas is essential in determining beta cell mass. Furthermore, HUWE1 demonstrated divergent roles in regulating beta cell apoptosis depending on physiological or genotoxic conditions.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Pancreas/metabolism , Pancreas/pathology , Ubiquitin-Protein Ligases/metabolism , Animals , Female , Male , Mice , Mice, Mutant Strains , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL