Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nature ; 626(8001): 1094-1101, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38383783

ABSTRACT

Persistent SARS-CoV-2 infections may act as viral reservoirs that could seed future outbreaks1-5, give rise to highly divergent lineages6-8 and contribute to cases with post-acute COVID-19 sequelae (long COVID)9,10. However, the population prevalence of persistent infections, their viral load kinetics and evolutionary dynamics over the course of infections remain largely unknown. Here, using viral sequence data collected as part of a national infection survey, we identified 381 individuals with SARS-CoV-2 RNA at high titre persisting for at least 30 days, of which 54 had viral RNA persisting at least 60 days. We refer to these as 'persistent infections' as available evidence suggests that they represent ongoing viral replication, although the persistence of non-replicating RNA cannot be ruled out in all. Individuals with persistent infection had more than 50% higher odds of self-reporting long COVID than individuals with non-persistent infection. We estimate that 0.1-0.5% of infections may become persistent with typically rebounding high viral loads and last for at least 60 days. In some individuals, we identified many viral amino acid substitutions, indicating periods of strong positive selection, whereas others had no consensus change in the sequences for prolonged periods, consistent with weak selection. Substitutions included mutations that are lineage defining for SARS-CoV-2 variants, at target sites for monoclonal antibodies and/or are commonly found in immunocompromised people11-14. This work has profound implications for understanding and characterizing SARS-CoV-2 infection, epidemiology and evolution.


Subject(s)
COVID-19 , Health Surveys , Persistent Infection , SARS-CoV-2 , Humans , Amino Acid Substitution , Antibodies, Monoclonal/immunology , COVID-19/epidemiology , COVID-19/virology , Evolution, Molecular , Immunocompromised Host/immunology , Mutation , Persistent Infection/epidemiology , Persistent Infection/virology , Post-Acute COVID-19 Syndrome/epidemiology , Post-Acute COVID-19 Syndrome/virology , Prevalence , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Selection, Genetic , Self Report , Time Factors , Viral Load , Virus Replication
2.
PLoS Pathog ; 19(8): e1011461, 2023 08.
Article in English | MEDLINE | ID: mdl-37578971

ABSTRACT

In this study, we evaluated the impact of viral variant, in addition to other variables, on within-host viral burden, by analysing cycle threshold (Ct) values derived from nose and throat swabs, collected as part of the UK COVID-19 Infection Survey. Because viral burden distributions determined from community survey data can be biased due to the impact of variant epidemiology on the time-since-infection of samples, we developed a method to explicitly adjust observed Ct value distributions to account for the expected bias. By analysing the adjusted Ct values using partial least squares regression, we found that among unvaccinated individuals with no known prior exposure, viral burden was 44% lower among Alpha variant infections, compared to those with the predecessor strain, B.1.177. Vaccination reduced viral burden by 67%, and among vaccinated individuals, viral burden was 286% higher among Delta variant, compared to Alpha variant, infections. In addition, viral burden increased by 17% for every 10-year age increment of the infected individual. In summary, within-host viral burden increases with age, is reduced by vaccination, and is influenced by the interplay of vaccination status and viral variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Selection Bias , SARS-CoV-2/genetics , Viral Load , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination
4.
Proc Biol Sci ; 290(2009): 20231284, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37848057

ABSTRACT

The Office for National Statistics Coronavirus (COVID-19) Infection Survey (ONS-CIS) is the largest surveillance study of SARS-CoV-2 positivity in the community, and collected data on the United Kingdom (UK) epidemic from April 2020 until March 2023 before being paused. Here, we report on the epidemiological and evolutionary dynamics of SARS-CoV-2 determined by analysing the sequenced samples collected by the ONS-CIS during this period. We observed a series of sweeps or partial sweeps, with each sweeping lineage having a distinct growth advantage compared to their predecessors, although this was also accompanied by a gradual fall in average viral burdens from June 2021 to March 2023. The sweeps also generated an alternating pattern in which most samples had either S-gene target failure (SGTF) or non-SGTF over time. Evolution was characterized by steadily increasing divergence and diversity within lineages, but with step increases in divergence associated with each sweeping major lineage. This led to a faster overall rate of evolution when measured at the between-lineage level compared to within lineages, and fluctuating levels of diversity. These observations highlight the value of viral sequencing integrated into community surveillance studies to monitor the viral epidemiology and evolution of SARS-CoV-2, and potentially other pathogens.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/epidemiology , SARS-CoV-2 , United Kingdom/epidemiology , Surveys and Questionnaires
5.
J Clin Microbiol ; 60(4): e0228321, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35321556

ABSTRACT

Tools to detect SARS-CoV-2 variants of concern and track the ongoing evolution of the virus are necessary to support public health efforts and the design and evaluation of novel COVID-19 therapeutics and vaccines. Although next-generation sequencing (NGS) has been adopted as the gold standard method for discriminating SARS-CoV-2 lineages, alternative methods may be required when processing samples with low viral loads or low RNA quality. To this aim, an allele-specific probe PCR (ASP-PCR) targeting lineage-specific single nucleotide polymorphisms (SNPs) was developed and used to screen 1,082 samples from two clinical trials in the United Kingdom and Brazil. Probit regression models were developed to compare ASP-PCR performance against 1,771 NGS results for the same cohorts. Individual SNPs were shown to readily identify specific variants of concern. ASP-PCR was shown to discriminate SARS-CoV-2 lineages with a higher likelihood than NGS over a wide range of viral loads. The comparative advantage for ASP-PCR over NGS was most pronounced in samples with cycle threshold (CT) values between 26 and 30 and in samples that showed evidence of degradation. Results for samples screened by ASP-PCR and NGS showed 99% concordant results. ASP-PCR is well suited to augment but not replace NGS. The method can differentiate SARS-CoV-2 lineages with high accuracy and would be best deployed to screen samples with lower viral loads or that may suffer from degradation. Future work should investigate further destabilization from primer-target base mismatch through altered oligonucleotide chemistry or chemical additives.


Subject(s)
COVID-19 , SARS-CoV-2 , Alleles , COVID-19/diagnosis , Humans , Polymerase Chain Reaction , SARS-CoV-2/genetics
6.
Proc Biol Sci ; 289(1987): 20221747, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36382519

ABSTRACT

The raw material for viral evolution is provided by intra-host mutations occurring during replication, transcription or post-transcription. Replication and transcription of Coronaviridae proceed through the synthesis of negative-sense 'antigenomes' acting as templates for positive-sense genomic and subgenomic RNA. Hence, mutations in the genomes of SARS-CoV-2 and other coronaviruses can occur during (and after) the synthesis of either negative-sense or positive-sense RNA, with potentially distinct patterns and consequences. We explored for the first time the mutational spectrum of SARS-CoV-2 (sub)genomic and anti(sub)genomic RNA. We use a high-quality deep sequencing dataset produced using a quantitative strand-aware sequencing method, controlled for artefacts and sequencing errors, and scrutinized for accurate detection of within-host diversity. The nucleotide differences between negative- and positive-sense strand consensus vary between patients and do not show dependence on age or sex. Similarities and differences in mutational patterns between within-host minor variants on the two RNA strands suggested strand-specific mutations or editing by host deaminases and oxidative damage. We observe generally neutral and slight negative selection on the negative strand, contrasting with purifying selection in ORF1a, ORF1b and S genes of the positive strand of the genome.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Genome, Viral , Mutation , Genomics
7.
J Clin Microbiol ; 58(10)2020 09 22.
Article in English | MEDLINE | ID: mdl-32669382

ABSTRACT

Viral genetic sequencing can be used to monitor the spread of HIV drug resistance, identify appropriate antiretroviral regimes, and characterize transmission dynamics. Despite decreasing costs, next-generation sequencing (NGS) is still prohibitively costly for routine use in generalized HIV epidemics in low- and middle-income countries. Here, we present veSEQ-HIV, a high-throughput, cost-effective NGS sequencing method and computational pipeline tailored specifically to HIV, which can be performed using leftover blood drawn for routine CD4 cell count testing. This method overcomes several major technical challenges that have prevented HIV sequencing from being used routinely in public health efforts; it is fast, robust, and cost-efficient, and generates full genomic sequences of diverse strains of HIV without bias. The complete veSEQ-HIV pipeline provides viral load estimates and quantitative summaries of drug resistance mutations; it also exploits information on within-host viral diversity to construct directed transmission networks. We evaluated the method's performance using 1,620 plasma samples collected from individuals attending 10 large urban clinics in Zambia as part of the HPTN 071-2 study (PopART Phylogenetics). Whole HIV genomes were recovered from 91% of samples with a viral load of >1,000 copies/ml. The cost of the assay (30 GBP per sample) compares favorably with existing VL and HIV genotyping tests, proving an affordable option for combining HIV clinical monitoring with molecular epidemiology and drug resistance surveillance in low-income settings.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Anti-HIV Agents/therapeutic use , Drug Resistance, Viral/genetics , Genomics , HIV Infections/diagnosis , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , Viral Load , Zambia
8.
Lancet Microbe ; 5(1): e62-e71, 2024 01.
Article in English | MEDLINE | ID: mdl-38081203

ABSTRACT

BACKGROUND: In the last decade, universally available antiretroviral therapy (ART) has led to greatly improved health and survival of people living with HIV in sub-Saharan Africa, but new infections continue to appear. The design of effective prevention strategies requires the demographic characterisation of individuals acting as sources of infection, which is the aim of this study. METHODS: Between 2014 and 2018, the HPTN 071 PopART study was conducted to quantify the public health benefits of ART. Viral samples from 7124 study participants in Zambia were deep-sequenced as part of HPTN 071-02 PopART Phylogenetics, an ancillary study. We used these sequences to identify likely transmission pairs. After demographic weighting of the recipients in these pairs to match the overall HIV-positive population, we analysed the demographic characteristics of the sources to better understand transmission in the general population. FINDINGS: We identified a total of 300 likely transmission pairs. 178 (59·4%) were male to female, with 130 (95% CI 110-150; 43·3%) from males aged 25-40 years. Overall, men transmitted 2·09-fold (2·06-2·29) more infections per capita than women, a ratio peaking at 5·87 (2·78-15·8) in the 35-39 years source age group. 40 (26-57; 13·2%) transmissions linked individuals from different communities in the trial. Of 288 sources with recorded information on drug resistance mutations, 52 (38-69; 18·1%) carried viruses resistant to first-line ART. INTERPRETATION: HIV-1 transmission in the HPTN 071 study communities comes from a wide range of age and sex groups, and there is no outsized contribution to new infections from importation or drug resistance mutations. Men aged 25-39 years, underserved by current treatment and prevention services, should be prioritised for HIV testing and ART. FUNDING: National Institute of Allergy and Infectious Diseases, US President's Emergency Plan for AIDS Relief, International Initiative for Impact Evaluation, Bill & Melinda Gates Foundation, National Institute on Drug Abuse, and National Institute of Mental Health.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Adult , Female , Humans , Male , Demography , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV-1/genetics , Molecular Epidemiology , United States , Zambia/epidemiology
9.
Nat Commun ; 15(1): 2379, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493135

ABSTRACT

Respiratory syncytial virus (RSV) is the leading cause of hospitalisation for respiratory infection in young children. RSV disease severity is known to be age-dependent and highest in young infants, but other correlates of severity, particularly the presence of additional respiratory pathogens, are less well understood. In this study, nasopharyngeal swabs were collected from two cohorts of RSV-positive infants <12 months in Spain, the UK, and the Netherlands during 2017-20. We show, using targeted metagenomic sequencing of >100 pathogens, including all common respiratory viruses and bacteria, from samples collected from 433 infants, that burden of additional viruses is common (111/433, 26%) but only modestly correlates with RSV disease severity. In contrast, there is strong evidence in both cohorts and across age groups that presence of Haemophilus bacteria (194/433, 45%) is associated with higher severity, including much higher rates of hospitalisation (odds ratio 4.25, 95% CI 2.03-9.31). There is no evidence for association between higher severity and other detected bacteria, and no difference in severity between RSV genotypes. Our findings reveal the genomic diversity of additional pathogens during RSV infection in infants, and provide an evidence base for future causal investigations of the impact of co-infection on RSV disease severity.


Subject(s)
Coinfection , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Infant , Child , Humans , Child, Preschool , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Hospitalization
10.
Science ; 375(6580): 540-545, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35113714

ABSTRACT

We discovered a highly virulent variant of subtype-B HIV-1 in the Netherlands. One hundred nine individuals with this variant had a 0.54 to 0.74 log10 increase (i.e., a ~3.5-fold to 5.5-fold increase) in viral load compared with, and exhibited CD4 cell decline twice as fast as, 6604 individuals with other subtype-B strains. Without treatment, advanced HIV-CD4 cell counts below 350 cells per cubic millimeter, with long-term clinical consequences-is expected to be reached, on average, 9 months after diagnosis for individuals in their thirties with this variant. Age, sex, suspected mode of transmission, and place of birth for the aforementioned 109 individuals were typical for HIV-positive people in the Netherlands, which suggests that the increased virulence is attributable to the viral strain. Genetic sequence analysis suggests that this variant arose in the 1990s from de novo mutation, not recombination, with increased transmissibility and an unfamiliar molecular mechanism of virulence.


Subject(s)
HIV Infections/virology , HIV-1/pathogenicity , Adult , Anti-HIV Agents/therapeutic use , CD4 Lymphocyte Count , Evolution, Molecular , Female , Genome, Viral , Genotype , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/transmission , HIV-1/genetics , HIV-1/physiology , Humans , Male , Mutation , Netherlands , Phylogeny , Viral Load , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL