Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Appl Environ Microbiol ; 90(9): e0084824, 2024 09 18.
Article in English | MEDLINE | ID: mdl-39158313

ABSTRACT

Xanthomonas species are major pathogens of plants and have been studied extensively. There is increasing recognition of the importance of non-pathogenic species within the same genus. With this came the need to understand the genomic and functional diversity of non-pathogenic Xanthomonas (NPX) at the species and strain level. This study reports isolation and investigation into the genomic diversity and variation in NPX isolates, chiefly Xanthomonas indica, a newly discovered NPX species from rice. The study establishes the relationship of X. indica strains within clade I of Xanthomonads with another NPX species, X. sontii, also associated with rice seeds. Identification of highly diverse strains, open-pan genome, and systematic hyper-variation at the lipopolysaccharide biosynthetic locus when compared to pathogenic Xanthomonas indicates the acquisition of new functions for adaptation. Furthermore, comparative genomics studies established the absence of major virulence genes such as type III secretion system and effectors, which are present in the pathogens, and the presence of a known bacterial-killing type IV secretion system (X-T4SS). The diverse non-pathogenic strains of X. indica and X. sontii were found to protect rice from bacterial leaf blight pathogen, X. oryzae pv. oryzae (Xoo). The absence of phenotype of an X-T4SS mutant suggests redundancy in the genetic basis of the mechanisms involved in the bioprotection function, which may include multiple genetic loci, such as putative bacteriocin-encoding gene clusters and involvement of other factors such as nutrient and niche competition apart from induction of innate immunity through shared microbial-associated molecular patterns. The rice-NPX community and its pathogenic counterpart can be a promising model for understanding plant-microbe-microbiome interaction studies.IMPORTANCEThe Xanthomonas group of bacteria is known for its characteristic lifestyle as a phytopathogen. However, the discovery of non-pathogenic Xanthomonas (NPX) species is a major shift in understanding this group of bacteria. Multi-strain, in-depth genomic, evolutionary and functional studies on each of these NPX species are still lacking. This study on diverse non-pathogenic strains provides novel insights into genome diversity, dynamics, and evolutionary trends of NPX species from rice microbiome apart from its relationship with other relatives that form a sub-clade. Interestingly, we also uncovered that NPX species protect rice from pathogenic Xanthomonas species. The plant protection property shows their importance as a part of a healthy plant microbiome. Furthermore, finding an open pan-genome and large-scale variation at lipopolysaccharide biosynthetic locus indicates a significant role of the NPX community in host adaptation. The findings and high-quality genomic resources of NPX species and the strains will allow further systematic molecular and host-associated microbial community studies for plant health.


Subject(s)
Genome, Bacterial , Genomics , Microbiota , Oryza , Xanthomonas , Xanthomonas/genetics , Xanthomonas/classification , Oryza/microbiology , Plant Diseases/microbiology , Phylogeny
2.
Curr Microbiol ; 79(10): 304, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064810

ABSTRACT

Xanthomonas is a major group of pathogenic bacteria infecting staple food crops like rice. Increasingly it is being recognized that non-pathogenic Xanthomonas (NPX) are also important members of a healthy plant microbiome. However, the vast majority of the species described in this genus are of pathogenic nature, and only a few NPX species have been reported till now. Genomic and taxonogenomic analysis of NPX is needed for the management of this important group of bacteria. In this study, two yellow-pigmented bacterial isolates were obtained from healthy rice seeds in Punjab, India. The isolates designated PPL560T and PPL568 were identified as members of the genus Xanthomonas based on biochemical tests and 16S rRNA gene sequence analysis retrieved from the whole-genome sequences. Isolates formed a distinct monophyletic lineage with Xanthomonas sontii and Xanthomonas sacchari as the closest relatives in the phylogenetic tree based on core gene content shared by the representative species of the genus Xanthomonas. Pairwise ortho Average Nucleotide Identity and digital DNA-DNA hybridization values calculated against other species of Xanthomonas were below their respective cut-offs. In planta studies revealed that PPL560T and PPL568 are non-pathogenic to rice plants upon leaf clip inoculation. The absence of type III secretion system-related genes and effectors further supported their non-pathogenic status. Herein, we propose Xanthomonas indica sp. nov. as novel species of the genus Xanthomonas with PPL560T = MTCC 13185 = CFBP 9039 = ICMP 24394 as its type strain and PPL568 as another constituent member.


Subject(s)
Oryza , Xanthomonas , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Oryza/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Seeds , Xanthomonas/genetics
3.
Rice (N Y) ; 14(1): 94, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34792681

ABSTRACT

The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.

4.
Sci Adv ; 6(46)2020 11.
Article in English | MEDLINE | ID: mdl-33188025

ABSTRACT

Vascular plant pathogens travel long distances through host veins, leading to life-threatening, systemic infections. In contrast, nonvascular pathogens remain restricted to infection sites, triggering localized symptom development. The contrasting features of vascular and nonvascular diseases suggest distinct etiologies, but the basis for each remains unclear. Here, we show that the hydrolase CbsA acts as a phenotypic switch between vascular and nonvascular plant pathogenesis. cbsA was enriched in genomes of vascular phytopathogenic bacteria in the family Xanthomonadaceae and absent in most nonvascular species. CbsA expression allowed nonvascular Xanthomonas to cause vascular blight, while cbsA mutagenesis resulted in reduction of vascular or enhanced nonvascular symptom development. Phylogenetic hypothesis testing further revealed that cbsA was lost in multiple nonvascular lineages and more recently gained by some vascular subgroups, suggesting that vascular pathogenesis is ancestral. Our results overall demonstrate how the gain and loss of single loci can facilitate the evolution of complex ecological traits.


Subject(s)
Xanthomonas , Bacteria , Hydrolases , Phylogeny , Plants/genetics , Xanthomonas/genetics
SELECTION OF CITATIONS
SEARCH DETAIL