Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Nature ; 558(7711): 540-546, 2018 06.
Article in English | MEDLINE | ID: mdl-29899452

ABSTRACT

CLOVES syndrome (congenital lipomatous overgrowth, vascular malformations, epidermal naevi, scoliosis/skeletal and spinal syndrome) is a genetic disorder that results from somatic, mosaic gain-of-function mutations of the PIK3CA gene, and belongs to the spectrum of PIK3CA-related overgrowth syndromes (PROS). This rare condition has no specific treatment and a poor survival rate. Here, we describe a postnatal mouse model of PROS/CLOVES that partially recapitulates the human disease, and demonstrate the efficacy of BYL719, an inhibitor of PIK3CA, in preventing and improving organ dysfunction. On the basis of these results, we used BYL719 to treat nineteen patients with PROS. The drug improved the disease symptoms in all patients. Previously intractable vascular tumours became smaller, congestive heart failure was improved, hemihypertrophy was reduced, and scoliosis was attenuated. The treatment was not associated with any substantial side effects. In conclusion, this study provides the first direct evidence supporting PIK3CA inhibition as a promising therapeutic strategy in patients with PROS.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Lipoma/drug therapy , Lipoma/enzymology , Molecular Targeted Therapy , Musculoskeletal Abnormalities/drug therapy , Musculoskeletal Abnormalities/enzymology , Nevus/drug therapy , Nevus/enzymology , Thiazoles/therapeutic use , Vascular Malformations/drug therapy , Vascular Malformations/enzymology , Adult , Animals , Child , Disease Models, Animal , Female , HeLa Cells , Heart Failure/complications , Heart Failure/drug therapy , Humans , Male , Mice , Phenotype , Scoliosis/complications , Scoliosis/drug therapy , Sirolimus/therapeutic use , Syndrome , Vascular Neoplasms/complications , Vascular Neoplasms/drug therapy
3.
J Am Soc Nephrol ; 32(8): 1974-1986, 2021 08.
Article in English | MEDLINE | ID: mdl-34078664

ABSTRACT

BACKGROUND: CKD is associated with the loss of functional nephr ons, leading to increased mechanical and metabolic stress in the remaining cells, particularly for cells constituting the filtration barrier, such as podocytes. The failure of podocytes to mount an adequate stress response can lead to further nephron loss and disease progression. However, the mechanisms that regulate this degenerative process in the kidney are unknown. METHODS: We combined in vitro, in vivo, and organ-on-chip approaches to identify the RE1-silencing transcription factor (REST), a repressor of neuronal genes during embryonic development, as a central regulator of podocyte adaptation to injury and aging. RESULTS: Mice with a specific deletion of REST in podocytes exhibit albuminuria, podocyte apoptosis, and glomerulosclerosis during aging, and exhibit increased vulnerability to renal injury. This phenotype is mediated, in part, by the effects of REST on the podocyte cytoskeleton that promote resistance to mechanical stressors and augment podocyte survival. Finally, REST expression is upregulated in human podocytes during aging, consistent with a conserved mechanism of stress resistance. CONCLUSIONS: These results suggest REST protects the kidney from injury and degeneration during aging, with potentially important therapeutic implications.


Subject(s)
Adaptation, Physiological/genetics , Aging/physiology , Podocytes/pathology , Podocytes/physiology , Repressor Proteins/genetics , Stress, Physiological/genetics , Adult , Aged , Aged, 80 and over , Albuminuria/genetics , Animals , Apoptosis/genetics , Cell Line , Cell Survival , Cytoskeleton/physiology , Gene Expression Regulation/genetics , Homeostasis/genetics , Humans , Mice , Phenotype , Repressor Proteins/metabolism , Sclerosis , Young Adult
4.
Sci Transl Med ; 13(614): eabg0809, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34613809

ABSTRACT

Lymphatic cystic malformations are rare genetic disorders mainly due to somatic gain-of-function mutations in the PIK3CA gene. These anomalies are frequently associated with pain, inflammatory flares, esthetic deformities, and, in severe forms, life-threatening conditions. There is no approved medical therapy for patients with lymphatic malformations. In this proof-of-concept study, we developed a genetic mouse model of PIK3CA-related lymphatic malformations that recapitulates human disease. Using this model, we demonstrated the efficacy of alpelisib, an approved pharmacological inhibitor of PIK3CA in oncology, in preventing lymphatic malformation occurrence, improving lymphatic anomalies, and extending survival. On the basis of these results, we treated six patients with alpelisib, including three children, displaying severe PIK3CA-related lymphatic malformations. Patients were already unsuccessfully treated with rapamycin, percutaneous sclerotherapies, and debulking surgical procedures. We assessed the volume of lymphatic malformations using magnetic resonance imaging (MRI) for each patient. Alpelisib administration was associated with improvements in the six patients. Previously intractable vascular malformations shrank, and pain and inflammatory flares were attenuated. MRI showed a decrease of 48% in the median volume of lymphatic malformations over 6 months on alpelisib. During the study, two patients developed adverse events potentially related to alpelisib, including grade 1 mucositis and diarrhea. In conclusion, this study supports PIK3CA inhibition as a promising therapeutic strategy in patients with PIK3CA-related lymphatic anomalies.


Subject(s)
Thiazoles , Animals , Humans , Mice
5.
Sci Transl Med ; 11(476)2019 01 23.
Article in English | MEDLINE | ID: mdl-30674655

ABSTRACT

Fibrosis contributes to the progression of chronic kidney disease (CKD). Severe acute kidney injury can lead to CKD through proximal tubular cell (PTC) cycle arrest in the G2-M phase, with secretion of profibrotic factors. Here, we show that epithelial cells in the G2-M phase form target of rapamycin (TOR)-autophagy spatial coupling compartments (TASCCs), which promote profibrotic secretion similar to the senescence-associated secretory phenotype. Cyclin G1 (CG1), an atypical cyclin, promoted G2-M arrest in PTCs and up-regulated TASCC formation. PTC TASCC formation was also present in humans with CKD. Prevention of TASCC formation in cultured PTCs blocked secretion of profibrotic factors. PTC-specific knockout of a key TASCC component reduced the rate of kidney fibrosis progression in mice with CKD. CG1 induction and TASCC formation also occur in liver fibrosis. Deletion of CG1 reduced G2-M phase cells and TASCC formation in vivo. This study provides mechanistic evidence supporting how profibrotic G2-M arrest is induced in kidney injury and how G2-M-arrested PTCs promote fibrosis, identifying new therapeutic targets to mitigate kidney fibrosis.


Subject(s)
Autophagy , Cell Compartmentation , Cell Cycle Checkpoints , Cyclin G1/metabolism , Epithelial Cells/pathology , Kidney/pathology , TOR Serine-Threonine Kinases/metabolism , Wound Healing , Animals , Cell Dedifferentiation , Disease Models, Animal , Disease Progression , Epithelial Cells/metabolism , Fibrosis , Humans , Kidney Tubules, Proximal/pathology , LLC-PK1 Cells , Male , Mice , Renal Insufficiency, Chronic/pathology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL