Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Antimicrob Chemother ; 78(6): 1406-1414, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37042351

ABSTRACT

OBJECTIVES: Physicians must leverage several factors when making antibiotic therapy decisions, including route of administration and duration of therapy. Oral administration provides several potential advantages including increased accessibility, prevention of hospitalizations and earlier discharges. Sulopenem-a broad-spectrum, synthetic penem ß-lactam agent-uniquely possesses both oral and IV formulations along with noted stability among antimicrobial-resistant subsets. This study evaluated the in vitro activity of sulopenem and comparator agents against contemporary Enterobacterales and anaerobic clinical isolates predominantly from patients with bloodstream, intra-abdominal and urinary tract infections. METHODS: A contemporary collection of 1647 Enterobacterales and 559 anaerobic isolates was assembled from medical centres in Europe and the USA. Isolates were susceptibility tested using the CLSI reference methods: broth microdilution for Enterobacterales and agar dilution for anaerobes. RESULTS: Sulopenem demonstrated potent in vitro antimicrobial activity (MIC50/90, 0.03/0.25 mg/L) against Enterobacterales isolates regardless of infection type, inhibiting 99.2% of isolates at ≤1 mg/L. This activity was conserved against resistant phenotypes including ESBL-phenotype Escherichia coli (MIC50/90, 0.03/0.06 mg/L) and ESBL-phenotype Klebsiella pneumoniae (MIC50/90, 0.06/1 mg/L). Sulopenem maintained activity against ciprofloxacin-, nitrofurantoin- and trimethoprim/sulfamethoxazole-non-susceptible subsets (MIC50/90, 0.03-0.06/0.12-0.5 mg/L). Against anaerobic isolates, sulopenem (98.9% inhibited at ≤4 mg/L) and meropenem [98.4% susceptible (CLSI)] were the most active compounds tested. CONCLUSIONS: The potent in vitro activity of sulopenem against this large collection of recent Enterobacterales and anaerobic clinical isolates from multiple infection types supports its further clinical evaluation in the treatment of intra-abdominal and urinary tract infections.


Subject(s)
Anti-Bacterial Agents , Urinary Tract Infections , Humans , Anaerobiosis , Anti-Bacterial Agents/pharmacology , Lactams , Meropenem , Escherichia coli , Microbial Sensitivity Tests
2.
Foodborne Pathog Dis ; 20(10): 427-434, 2023 10.
Article in English | MEDLINE | ID: mdl-37585616

ABSTRACT

Cattle are recognized as the principal reservoir for Escherichia coli O157:H7 and preharvest food safety efforts often focus on decreasing shedding of this pathogen in cattle feces. Enogen® corn (EC; Syngenta Seeds, LLC) is genetically modified to produce enhanced concentrations of α-amylase in the corn kernel endosperm. Research has demonstrated improvements in feed efficiency for cattle fed EC and research has not yet explored whether improved digestion impacts foodborne pathogen populations in cattle. Therefore, this study explored effects of finishing diets containing EC on Escherichia coli O157:H7 prevalence in cattle. A 2 × 2 factorial experiment was conducted with steers (n = 960) fed diets consisting of 2 types of silage (EC or Control) and grain (EC or Control), fed daily ad libitum. Steers were grouped into 12 blocks by incoming body weight, blocks were randomly assigned to one of four pens, and pens were randomly assigned to one diet. Cattle were sampled using rectoanal mucosal swabs in cohorts of 298-337 cattle per day, for a total of 3 sampling days (15-16 days apart). Escherichia coli O157:H7 prevalence rates ranged from not detected (0/75) to 10.0% (8/80) depending on sampling day. Tests for the silage × corn interaction, and the main effects of silage and corn, were not significant (p > 0.05); however, EC reduced the odds of Escherichia coli O157:H7 prevalence by 43% compared to the control corn diet (p = 0.07). Diets containing EC tended to decrease Escherichia coli O157:H7 prevalence in feedlot cattle; however, this reduction was not significant. Before a conclusion can be drawn about impact of EC on Escherichia coli O157:H7 in cattle, further research is necessary to (1) determine if this tendency is due to increased alpha amylase activity and (2) elucidate impact on Escherichia coli O157:H7 prevalence and concentration, as well as a possible mechanism of action.


Subject(s)
Cattle Diseases , Escherichia coli Infections , Escherichia coli O157 , Animals , Cattle , alpha-Amylases , Animal Feed/analysis , Colony Count, Microbial , Diet/veterinary , Escherichia coli Infections/epidemiology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Feces , Zea mays
3.
Pediatr Infect Dis J ; 42(3): 206-211, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36728824

ABSTRACT

BACKGROUND: Improvements in blood culture techniques and molecular-based diagnostics have led to increased recognition of Kingella kingae as an invasive human pathogen causing bacteremia, septic arthritis, osteomyelitis and endocarditis in young children. Serious disease and potentially life-threatening complications of infection due to K. kingae necessitate timely identification and appropriate antimicrobial therapy. Ceftaroline is a fifth-generation broad spectrum cephalosporin that possesses activity against Gram-negative and Gram-positive pathogens similar to third-generation cephalosporins, but also includes methicillin-resistant Staphylococcus aureus . This study reports the in vitro activity of ceftaroline and comparator agents against an international collection of K. kingae isolates. METHODS: A collection of 308 K. kingae isolates was obtained primarily from children with bacteremia, endocarditis, osteoarticular infections or from asymptomatic pediatric carriers. Isolates were tested for antibiotic susceptibility using Clinical and Laboratory Standard Institute broth microdilution methodology and screened for ß-lactamase production using a nitrocefin chromogenic test. RESULTS: Ceftaroline inhibited all K. kingae isolates at ≤0.06 mg/L (MIC 50/90 , 0.015/0.03 mg/L). Ceftaroline MICs were similar to results with ceftriaxone (MIC 50/90 , 0.015/0.015 mg/L), meropenem (MIC 50/90 , 0.015/0.015 mg/L) and ampicillin-sulbactam (MIC 50/90 , 0.06/0.06 mg/L). Ceftaroline MICs were slightly lower than MICs for cefuroxime and amoxicillin/clavulanate (MIC 50/90 , 0.06/0.12 mg/L). MICs were high for clindamycin (MIC 50/90 , 2/4 mg/L) and oxacillin (MIC 50/90 , 4/8 mg/L). Sixteen isolates (5.2%) yielded a positive nitrocefin test indicating production of ß-lactamase; ceftaroline demonstrated equivalent MICs against ß-lactamase - positive and ß-lactamase - negative strains (MIC 50/90 , 0.015/0.3 mg/L). CONCLUSIONS: The potent activity of ceftaroline against this large international collection of K. kingae isolates supports further clinical evaluation in children.


Subject(s)
Bacteremia , Endocarditis , Kingella kingae , Methicillin-Resistant Staphylococcus aureus , Humans , Child , Child, Preschool , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , beta-Lactamases , Microbial Sensitivity Tests , Ceftaroline
4.
J Food Prot ; 86(9): 100133, 2023 09.
Article in English | MEDLINE | ID: mdl-37479183

ABSTRACT

Feedlot cattle commonly shed the foodborne pathogen Escherichia coli O157:H7 in their feces. Megasphaera elsdenii (ME), a lactic acid-utilizing bacterium, is commonly administered to cattle to avoid lactate accumulation in the rumen and to control ruminal acidosis. The impact of administering ME on foodborne pathogen prevalence, specifically E. coli O157:H7, has not been explored. The purpose of this study was to quantify E. coli O157:H7 prevalence in finishing cattle administered ME. Cattle (n = 448) were assigned to treatments in a randomized complete block design with repeated measurements over two sampling periods. Treatments were arranged as a 2 × 2 factorial containing: ruminally protected lysine (RPL; included for a complementary study) fed at 0% or 0.45% of diet dry matter; with or without ME. Freeze-dried ME was administered as an oral drench (1 × 1010 CFU/steer on day one) and then top dressed onto basal diets (1 × 107 CFU/steer) daily thereafter. Rectoanal mucosal swabs (RAMS) were obtained from animals before harvest to determine the E. coli O157:H7 prevalence. The inclusion of RPL (P = 0.2136) and ME (P = 0.5012) did not impact E. coli O157:H7 prevalence, and RPL was not included in any significant interactions (P > 0.05). A significant interaction was observed between ME and sampling period (P = 0.0323), indicating that the effect of ME on E. coli O157:H7 prevalence varied over the sampling period. A diet containing ME reduced the odds of E. coli O157:H7 prevalence by 50% during sampling period 1 (8.0% and 14.7% for cattle with and without ME, respectively) and increased the odds by 23% during sampling period 2 (10.8% and 8.9% for cattle with and without ME, respectively). Administering ME in cattle diets did not impact E. coli O157:H7 in feedlot cattle. This is the first study to investigate the use of ME as a preharvest food safety intervention in cattle, and additional research is necessary to determine the efficacy.


Subject(s)
Cattle Diseases , Escherichia coli Infections , Escherichia coli O157 , Probiotics , Animals , Cattle , Male , Animal Feed/analysis , Cattle Diseases/microbiology , Colony Count, Microbial , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Feces/microbiology , Megasphaera elsdenii , Prevalence , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL