Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Immunol ; 25(7): 1257-1269, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806707

ABSTRACT

The circadian clock is a critical regulator of immunity, and this circadian control of immune modulation has an essential function in host defense and tumor immunosurveillance. Here we use a single-cell RNA sequencing approach and a genetic model of colorectal cancer to identify clock-dependent changes to the immune landscape that control the abundance of immunosuppressive cells and consequent suppression of cytotoxic CD8+ T cells. Of these immunosuppressive cell types, PD-L1-expressing myeloid-derived suppressor cells (MDSCs) peak in abundance in a rhythmic manner. Disruption of the epithelial cell clock regulates the secretion of cytokines that promote heightened inflammation, recruitment of neutrophils and the subsequent development of MDSCs. We also show that time-of-day anti-PD-L1 delivery is most effective when synchronized with the abundance of immunosuppressive MDSCs. Collectively, these data indicate that circadian gating of tumor immunosuppression informs the timing and efficacy of immune checkpoint inhibitors.


Subject(s)
B7-H1 Antigen , Circadian Clocks , Immune Checkpoint Inhibitors , Myeloid-Derived Suppressor Cells , Animals , Mice , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Circadian Clocks/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Mice, Inbred C57BL , Circadian Rhythm/immunology , CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Colorectal Neoplasms/drug therapy , Tumor Microenvironment/immunology , Immune Tolerance , Humans , Female , Cell Line, Tumor , Single-Cell Analysis , Immunosuppression Therapy , Cytokines/metabolism , Male
2.
Sci Adv ; 8(32): eabo2389, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35947664

ABSTRACT

An alarming rise in young onset colorectal cancer (CRC) has been reported; however, the underlying molecular mechanism remains undefined. Suspected risk factors of young onset CRC include environmental aspects, such as lifestyle and dietary factors, which are known to affect the circadian clock. We find that both genetic disruption and environmental disruption of the circadian clock accelerate Apc-driven CRC pathogenesis in vivo. Using an intestinal organoid model, we demonstrate that clock disruption promotes transformation by driving Apc loss of heterozygosity, which hyperactivates Wnt signaling. This up-regulates c-Myc, a known Wnt target, which drives heightened glycolytic metabolism. Using patient-derived organoids, we show that circadian rhythms are lost in human tumors. Last, we identify that variance between core clock and Wnt pathway genes significantly predicts the survival of patients with CRC. Overall, our findings demonstrate a previously unidentified mechanistic link between clock disruption and CRC, which has important implications for young onset cancer prevention.


Subject(s)
Circadian Clocks , Colorectal Neoplasms , Circadian Clocks/genetics , Circadian Rhythm/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Humans , Loss of Heterozygosity , Organoids/metabolism , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL