Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(42): e2204701119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215502

ABSTRACT

The synaptonemal complex (SC) is a proteinaceous scaffold that is assembled between paired homologous chromosomes during the onset of meiosis. Timely expression of SC coding genes is essential for SC assembly and successful meiosis. However, SC components have an intrinsic tendency to self-organize into abnormal repetitive structures, which are not assembled between the paired homologs and whose formation is potentially deleterious for meiosis and gametogenesis. This creates an interesting conundrum, where SC genes need to be robustly expressed during meiosis, but their expression must be carefully regulated to prevent the formation of anomalous SC structures. In this manuscript, we show that the Polycomb group protein Sfmbt, the Drosophila ortholog of human MBTD1 and L3MBTL2, is required to avoid excessive expression of SC genes during prophase I. Although SC assembly is normal after Sfmbt depletion, SC disassembly is abnormal with the formation of multiple synaptonemal complexes (polycomplexes) within the oocyte. Overexpression of the SC gene corona and depletion of other Polycomb group proteins are similarly associated with polycomplex formation during SC disassembly. These polycomplexes are highly dynamic and have a well-defined periodic structure. Further confirming the importance of Sfmbt, germ line depletion of this protein is associated with significant metaphase I defects and a reduction in female fertility. Since transcription of SC genes mostly occurs during early prophase I, our results suggest a role of Sfmbt and other Polycomb group proteins in downregulating the expression of these and other early prophase I genes during later stages of meiosis.


Subject(s)
Meiosis , Synaptonemal Complex , Chromosomal Proteins, Non-Histone/genetics , Chromosome Pairing , Female , Humans , Meiotic Prophase I , Polycomb-Group Proteins/genetics , Synaptonemal Complex/genetics
2.
EMBO J ; 39(23): e105432, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33073400

ABSTRACT

Mitotic spindle microtubules (MTs) undergo continuous poleward flux, whose driving force and function in humans remain unclear. Here, we combined loss-of-function screenings with analysis of MT-dynamics in human cells to investigate the molecular mechanisms underlying MT-flux. We report that kinesin-7/CENP-E at kinetochores (KTs) is the predominant driver of MT-flux in early prometaphase, while kinesin-4/KIF4A on chromosome arms facilitates MT-flux during late prometaphase and metaphase. Both these activities work in coordination with kinesin-5/EG5 and kinesin-12/KIF15, and our data suggest that the MT-flux driving force is transmitted from non-KT-MTs to KT-MTs by the MT couplers HSET and NuMA. Additionally, we found that the MT-flux rate correlates with spindle length, and this correlation depends on the establishment of stable end-on KT-MT attachments. Strikingly, we find that MT-flux is required to regulate spindle length by counteracting kinesin 13/MCAK-dependent MT-depolymerization. Thus, our study unveils the long-sought mechanism of MT-flux in human cells as relying on the coordinated action of four kinesins to compensate for MT-depolymerization and regulate spindle length.


Subject(s)
Kinesins/genetics , Kinesins/metabolism , Microtubules/metabolism , Cell Cycle Proteins/metabolism , Chromosomes , Humans , Metaphase/physiology , Mitosis , Spindle Apparatus/physiology
3.
J Biomed Sci ; 31(1): 74, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014450

ABSTRACT

BACKGROUND: Prostate cancer (PrCa) is the most frequently diagnosed cancer in men. Variants in known moderate- to high-penetrance genes explain less than 5% of the cases arising at early-onset (< 56 years) and/or with familial aggregation of the disease. Considering that BubR1 is an essential component of the mitotic spindle assembly checkpoint, we hypothesized that monoallelic BUB1B variants could be sufficient to fuel chromosomal instability (CIN), potentially triggering (prostate) carcinogenesis. METHODS: To unveil BUB1B as a new PrCa predisposing gene, we performed targeted next-generation sequencing in germline DNA from 462 early-onset/familial PrCa patients and 1,416 cancer patients fulfilling criteria for genetic testing for other hereditary cancer syndromes. To explore the pan-cancer role of BUB1B, we used in silico BubR1 molecular modeling, in vitro gene-editing, and ex vivo patients' tumors and peripheral blood lymphocytes. RESULTS: Rare BUB1B variants were found in ~ 1.9% of the early-onset/familial PrCa cases and in ~ 0.6% of other cancer patients fulfilling criteria for hereditary disease. We further show that BUB1B variants lead to decreased BubR1 expression and/or stability, which promotes increased premature chromatid separation and, consequently, triggers CIN, driving resistance to Taxol-based therapies. CONCLUSIONS: Our study shows that different BUB1B variants may uncover a trigger for CIN-driven carcinogenesis, supporting the role of BUB1B as a (pan)-cancer predisposing gene with potential impact on genetic counseling and treatment decision-making.


Subject(s)
Chromosomal Instability , Genetic Predisposition to Disease , Prostatic Neoplasms , Protein Serine-Threonine Kinases , Humans , Male , Prostatic Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Middle Aged , Germ-Line Mutation , Adult , Cell Cycle Proteins
4.
Semin Cell Dev Biol ; 117: 52-61, 2021 09.
Article in English | MEDLINE | ID: mdl-34127384

ABSTRACT

The establishment of a metaphase plate in which all chromosomes are attached to mitotic spindle microtubules and aligned at the cell equator is required for faithful chromosome segregation in metazoans. The achievement of this configuration relies on the precise coordination between several concurrent mechanisms that start upon nuclear envelope breakdown, mediate chromosome capture at their kinetochores during mitotic spindle assembly and culminate with the congression of all chromosomes to the spindle equator. This period is called 'prometaphase'. Because the nature of chromosome capture by mitotic spindle microtubules is error prone, the cell is provided of error correction mechanisms that sense and correct most erroneous kinetochore-microtubule attachments before committing to separate sister chromatids in anaphase. In this review, aimed for newcomers in the field, more than providing an exhaustive mechanistic coverage of each and every concurrent mechanism taking place during prometaphase, we provide an integrative overview of these processes that ultimately promote the subsequent faithful segregation of chromosomes during mitosis.


Subject(s)
Mitosis/physiology , Prometaphase/physiology , Humans , Spindle Apparatus/metabolism
5.
Chromosome Res ; 29(2): 159-173, 2021 06.
Article in English | MEDLINE | ID: mdl-33587225

ABSTRACT

CLASPs are key modulators of microtubule dynamics throughout the cell cycle. During mitosis, CLASPs independently associate with growing microtubule plus-ends and kinetochores and play essential roles in chromosome segregation. In a proteomic survey for human CLASP1-interacting proteins during mitosis, we have previously identified SOGA1 and SOGA2/MTCL1, whose mitotic roles remained uncharacterized. Here we performed an initial functional characterization of human SOGA1 and SOGA2/MTCL1 during mitosis. Using specific polyclonal antibodies raised against SOGA proteins, we confirmed their expression and reciprocal interaction with CLASP1 and CLASP2 during mitosis. In addition, we found that both SOGA1 and SOGA2/MTCL1 are phospho-regulated during mitosis by CDK1. Immunofluorescence analysis revealed that SOGA2/MTCL1 co-localizes with mitotic spindle microtubules and spindle poles throughout mitosis and both SOGA proteins are enriched at the midbody during mitotic exit/cytokinesis. GFP-tagging of SOGA2/MTCL1 further revealed a microtubule-independent localization at kinetochores. Live-cell imaging after siRNA-mediated knockdown of SOGA1 and SOGA2/MTCL1 showed that they are independently required for distinct aspects of chromosome segregation. Thus, SOGA1 and SOGA2/MTCL1 are bona fide CLASP-interacting proteins during mitosis required for faithful chromosome segregation in human cells.


Subject(s)
Chromosome Segregation , Proteomics , Humans , Kinetochores , Microtubule-Associated Proteins/genetics , Microtubules , Spindle Apparatus
6.
Opt Express ; 27(6): 8092-8111, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30894786

ABSTRACT

Stimulated emission depletion (STED) fluorescence microscopy squeezes an excited spot well below the wavelength scale using a doughnut-shaped depletion beam. To generate a doughnut, a scale-free vortex phase modulation (2D-STED) is often used because it provides maximal transverse confinement and radial-aberration immunity (RAI) to the central dip. However, RAI also means blindness to a defocus term, making the axial origin of fluorescence photons uncertain within the wavelength scale provided by the confocal detection pinhole. Here, to reduce the uncertainty, we perturb the 2D-STED phase mask so as to change the sign of the axial concavity near focus, creating a dilated dip. By providing laser depletion power, the dip can be compressed back in three dimensions to retrieve lateral resolution, now at a significantly higher contrast. We test this coherent-hybrid STED (CH-STED) mode in x-y imaging of complex biological structures, such as the dividing cell. The proposed strategy creates an orthogonal direction in the STED parametric space that uniquely allows independent tuning of resolution and contrast using a single depletion beam in a conventional (circular polarization-based) STED setup.

7.
Semin Cell Dev Biol ; 117: 1-5, 2021 09.
Article in English | MEDLINE | ID: mdl-34172396
8.
Chromosoma ; 126(1): 93-103, 2017 02.
Article in English | MEDLINE | ID: mdl-27106516

ABSTRACT

The coordination between late mitotic events such as poleward chromosome motion, spindle elongation, DNA decondensation, and nuclear envelope reformation (NER) is crucial for the completion of chromosome segregation at the anaphase-telophase transition. Mitotic exit is driven by a decrease of Cdk1 kinase activity and an increase of PP1/PP2A phosphatase activities. More recently, Aurora kinases have also emerged as master regulators of late mitotic events and cytokinesis. Aurora A is mainly associated with spindle poles throughout mitosis and midbody during telophase, whereas Aurora B re-localizes from centromeres in early mitosis to the spindle midzone and midbody as cells progress from anaphase to the completion of cytokinesis. Functional studies, together with the identification of a phosphorylation gradient during anaphase, established Aurora B as a major player in the organization of the spindle midzone and in the spatiotemporal coordination between chromosome segregation and NER. Aurora A has been less explored, but a cooperative role in spindle midzone stability has also been proposed, implying that both Aurora A and B contribute to accurate chromosome segregation during mitotic exit. Here, we review the roles of the Aurora kinases in the regulation of late mitotic events and discuss how they work together with other mitotic players to ensure an error-free mitosis.


Subject(s)
Aurora Kinases/metabolism , Mitosis , Animals , Aurora Kinases/chemistry , Aurora Kinases/genetics , Chromosomes/genetics , Chromosomes/metabolism , Humans , Phosphorylation , Protein Binding , Proteolysis , Signal Transduction , Spindle Apparatus/metabolism , Substrate Specificity
9.
EMBO J ; 32(12): 1761-77, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23685359

ABSTRACT

Maintenance of genomic stability during eukaryotic cell division relies on the spindle assembly checkpoint (SAC) that prevents mitotic exit until all chromosomes are properly attached to the spindle. Polo is a mitotic kinase proposed to be involved in SAC function, but its role has remained elusive. We demonstrate that Polo and Aurora B functional interdependency comprises a positive feedback loop that promotes Mps1 kinetochore localization and activity. Expression of constitutively active Polo restores normal Mps1 kinetochore levels even after Aurora B inhibition, highlighting a role for Polo in Mps1 recruitment to unattached kinetochores downstream of Aurora B. We also show that Mps1 kinetochore localization is required for BubR1 hyperphosphorylation and formation of the 3F3/2 phosphoepitope. This is essential to allow recruitment of Cdc20 to unattached kinetochores and the assembly of anaphase-promoting complex/cyclosome-inhibitory complexes to levels that ensure long-term SAC activity. We propose a model in which Polo controls Mps1-dependent BubR1 phosphorylation to promote Cdc20 kinetochore recruitment and sustained SAC function.


Subject(s)
Cell Cycle Proteins/metabolism , Drosophila Proteins/metabolism , Kinetochores/metabolism , Protein Serine-Threonine Kinases/metabolism , Spindle Apparatus/metabolism , Animals , Aurora Kinases , Cdc20 Proteins , Cell Cycle Proteins/genetics , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster , Phosphorylation/physiology , Protein Serine-Threonine Kinases/genetics , Spindle Apparatus/genetics
10.
Bioessays ; 37(3): 257-66, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25470791

ABSTRACT

Here we discuss a "chromosome separation checkpoint" that might regulate the anaphase-telophase transition. The concept of cell cycle checkpoints was originally proposed to account for extrinsic control mechanisms that ensure the order of cell cycle events. Several checkpoints have been shown to regulate major cell cycle transitions, namely at G1-S and G2-M. At the onset of mitosis, the prophase-prometaphase transition is controlled by several potential checkpoints, including the antephase checkpoint, while the spindle assembly checkpoint guards the metaphase-anaphase transition. Our hypothesis is based on the recently uncovered feedback control mechanism that delays chromosome decondensation and nuclear envelope reassembly until effective separation of sister chromatids during anaphase is achieved. A central player in this potential checkpoint is the establishment of a constitutive, midzone-based Aurora B phosphorylation gradient that monitors the position of chromosomes along the spindle axis. We propose that this surveillance mechanism represents an additional step towards ensuring mitotic fidelity.


Subject(s)
Anaphase , Telophase , Animals , Aurora Kinase B/metabolism , CDC2 Protein Kinase/metabolism , Cell Line , Chromosome Segregation , Drosophila melanogaster , Humans , Protein Phosphatase 1/metabolism , Protein Phosphatase 2/metabolism
11.
EMBO Rep ; 15(3): 203-4, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24531719

ABSTRACT

Haspin is an atypical mitotic kinase that phosphorylates histone H3 on threonine 3 (H3T3), which is required to target Aurora B to centromeres. However, how Haspin is activated upon mitotic entry remained unknown. Two independent studies, published in Molecular Cell and in this issue of EMBO reports by Ghenoiu et al and Zhou et al, respectively, now show that Plk1 is responsible for Haspin activation as a H3T3 kinase. These results shed light on the spatiotemporal regulation of Aurora B to ensure mitotic fidelity.


Subject(s)
Cell Cycle Proteins/metabolism , Histones/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitosis/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Xenopus Proteins/metabolism , Animals , Humans , Polo-Like Kinase 1
12.
Proc Natl Acad Sci U S A ; 110(49): 19808-13, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24255106

ABSTRACT

Animal mitotic spindle assembly relies on centrosome-dependent and centrosome-independent mechanisms, but their relative contributions remain unknown. Here, we investigated the molecular basis of the centrosome-independent spindle assembly pathway by performing a whole-genome RNAi screen in Drosophila S2 cells lacking functional centrosomes. This screen identified 197 genes involved in acentrosomal spindle assembly, eight of which had no previously described mitotic phenotypes and produced defective and/or short spindles. All 197 genes also produced RNAi phenotypes when centrosomes were present, indicating that none were entirely selective for the acentrosomal pathway. However, a subset of genes produced a selective defect in pole focusing when centrosomes were absent, suggesting that centrosomes compensate for this shape defect. Another subset of genes was specifically associated with the formation of multipolar spindles only when centrosomes were present. We further show that the chromosomal passenger complex orchestrates multiple centrosome-independent processes required for mitotic spindle assembly/maintenance. On the other hand, despite the formation of a chromosome-enriched RanGTP gradient, S2 cells depleted of RCC1, the guanine-nucleotide exchange factor for Ran on chromosomes, established functional bipolar spindles. Finally, we show that cells without functional centrosomes have a delay in chromosome congression and anaphase onset, which can be explained by the lack of polar ejection forces. Overall, these findings establish the constitutive nature of a centrosome-independent spindle assembly program and how this program is adapted to the presence/absence of centrosomes in animal somatic cells.


Subject(s)
Drosophila/genetics , Genes, cdc/genetics , Spindle Apparatus/genetics , Spindle Apparatus/physiology , Animals , Cell Line , Centrosome/metabolism , DNA Primers/genetics , Gene Library , RNA Interference
13.
Biophys J ; 107(2): 289-300, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-25028871

ABSTRACT

Regulating the stability of microtubule (MT)-kinetochore attachments is fundamental to avoiding mitotic errors and ensuring proper chromosome segregation during cell division. Although biochemical factors involved in this process have been identified, their mechanics still need to be better understood. Here we introduce and simulate a mechanical model of MT-kinetochore interactions in which the stability of the attachment is ruled by the geometrical conformations of curling MT-protofilaments entangled in kinetochore fibrils. The model allows us to reproduce, with good accuracy, in vitro experimental measurements of the detachment times of yeast kinetochores from MTs under external pulling forces. Numerical simulations suggest that geometrical features of MT-protofilaments may play an important role in the switch between stable and unstable attachments.


Subject(s)
Kinetochores/chemistry , Microtubules/chemistry , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Amino Acid Sequence , Kinetochores/metabolism , Microtubules/metabolism , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Stability , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
14.
EMBO J ; 29(20): 3531-43, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20852589

ABSTRACT

Accurate chromosome segregation during mitosis requires precise coordination of various processes, such as chromosome alignment, maturation of proper kinetochore-microtubule (kMT) attachments, correction of erroneous attachments, and silencing of the spindle assembly checkpoint (SAC). How these fundamental aspects of mitosis are coordinately and temporally regulated is poorly understood. In this study, we show that the temporal regulation of kMT attachments by CLASP1, astrin and Kif2b is central to mitotic progression and chromosome segregation fidelity. In early mitosis, a Kif2b-CLASP1 complex is recruited to kinetochores to promote chromosome movement, kMT turnover, correction of attachment errors, and maintenance of SAC signalling. However, during metaphase, this complex is replaced by an astrin-CLASP1 complex, which promotes kMT stability, chromosome alignment, and silencing of the SAC. We show that these two complexes are differentially recruited to kinetochores and are mutually exclusive. We also show that other kinetochore proteins, such as Kif18a, affect kMT attachments and chromosome movement through these proteins. Thus, CLASP1-astrin-Kif2b complex act as a central switch at kinetochores that defines mitotic progression and promotes fidelity by temporally regulating kMT attachments.


Subject(s)
Cell Cycle Proteins/metabolism , Kinesins/metabolism , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitosis/physiology , Spindle Apparatus/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Centromere Protein B/genetics , Centromere Protein B/metabolism , Chromosomes/metabolism , Humans , Kinesins/genetics , Microtubule-Associated Proteins/genetics , RNA Interference , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
15.
Nat Chem Biol ; 13(9): 1058-1059, 2017 09.
Article in English | MEDLINE | ID: mdl-28805799
16.
Chromosome Res ; 21(3): 329-37, 2013 May.
Article in English | MEDLINE | ID: mdl-23681663

ABSTRACT

According to the "immortal" DNA strand hypothesis (Cairns Nature 255:197-200, 1975), stem cells would keep their template strands in order to prevent the accumulation of mutations, which could occur during DNA replication. Despite the growing number of studies that attempt to test this hypothesis, the conclusions remain highly controversial. In the base of this controversy lie the current limitations of available methodology to selectively and faithfully track the fate of template DNA strands throughout and upon cell division. Here, we developed a method that allows the unequivocal tracking of single chromatids containing template DNA strands in Drosophila S2 cells in culture. This method consists in the induction of mitosis with unreplicated genomes (MUGs) in which cells are allowed to enter mitosis without prior DNA replication. This is achieved by RNAi-mediated knockdown of Double parked, a conserved protein required for the initiation of DNA replication and post-replication checkpoint response. The advantages of this system when compared with MUGs generated in mammalian cells is the preservation of chromatid morphology, the ease of loss-of-function studies and the possibility of in vivo applications. Altogether, this approach allows for the readily visualization and tracking of template DNA strands by simply monitoring cells stably expressing GFP-fusions with either Histone H2B or the centromeric Histone variant CID/CENP-A by time-lapse fluorescence microscopy. This might be useful for the dissection of the molecular mechanism behind asymmetric DNA strand segregation.


Subject(s)
DNA Replication/genetics , DNA/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Genome, Insect/genetics , Mitosis/genetics , Templates, Genetic , Animals , Cell Line , Chromatids/metabolism , Kinetochores/metabolism , Models, Biological , Spindle Apparatus/metabolism
17.
Chromosome Res ; 20(5): 563-77, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22801775

ABSTRACT

Chromosome positioning at the equator of the mitotic spindle emerges out of a relatively entropic background. At this moment, termed metaphase, all kinetochores have typically captured microtubules leading to satisfaction of the spindle-assembly checkpoint, but the cell does not enter anaphase immediately. The waiting time in metaphase is related to the kinetics of securin and cyclin B1 degradation, which trigger sister-chromatid separation and promote anaphase processivity, respectively. Yet, as judged by metaphase duration, such kinetics vary widely between cell types and organisms, with no evident correlation to ploidy or cell size. During metaphase, many animal and plant spindles are also characterized by a conspicuous "flux" activity characterized by continuous poleward translocation of spindle microtubules, which maintain steady-state length and position. Whether spindle microtubule flux plays a specific role during metaphase remains arguable. Based on known experimental parameters, we have performed a comparative analysis amongst different cell types from different organisms and show that spindle length, metaphase duration and flux velocity combine within each system to obey a quasi-universal rule. As so, knowledge of two of these parameters is enough to estimate the third. This trend indicates that metaphase duration is tuned to allow approximately one kinetochore-to-pole round of microtubule flux. We propose that the time cells spend in metaphase evolved as a quality enhancement step that allows for the uniform stabilization/correction of kinetochore-microtubule attachments, thereby promoting mitotic fidelity.


Subject(s)
Kinetochores/metabolism , Metaphase , Microtubules/metabolism , Animals , Biomechanical Phenomena , Chromosome Segregation , Chromosomes/metabolism , Chromosomes/physiology , Cytokinesis , Humans , Kinetochores/physiology , M Phase Cell Cycle Checkpoints , Microtubules/physiology , Mitosis , Spindle Apparatus/metabolism , Spindle Apparatus/physiology , Time Factors
18.
J Cell Biol ; 222(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-37017932

ABSTRACT

Enduring chromosome segregation errors represent potential threats to genomic stability due to eventual chromosome copy number alterations (aneuploidy) and formation of micronuclei-key intermediates of a rapid mutational process known as chromothripsis that is found in cancer and congenital disorders. The spindle assembly checkpoint (SAC) has been viewed as the sole surveillance mechanism that prevents chromosome segregation errors during mitosis and meiosis. However, different types of chromosome segregation errors stemming from incorrect kinetochore-microtubule attachments satisfy the SAC and are more frequent than previously anticipated. Remarkably, recent works have unveiled that most of these errors are corrected during anaphase and only rarely result in aneuploidy or formation of micronuclei. Here, we discuss recent progress in our understanding of the origin and fate of chromosome segregation errors that satisfy the SAC and shed light on the surveillance, correction, and clearance mechanisms that prevent their transmission, to preserve genomic stability.


Subject(s)
Aneuploidy , Chromosome Segregation , Genomic Instability , Humans , Anaphase , Kinetochores , Microtubules , Mitosis , Spindle Apparatus
19.
STAR Protoc ; 4(1): 102011, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36640366

ABSTRACT

Here, we take advantage of the low chromosome number (2N=6) and distinctively large kinetochores of female Indian muntjac cells to investigate the molecular mechanism underlying k-fiber maturation. We describe steps for monitoring kinetochore-microtubule dynamics over time. Specifically, we detail the combination of live-cell super-resolution CH-STED microscopy of microtubule growth events within individual k-fibers and a laser-mediated k-fiber injury/repair assay. These tools provide a direct assessment of microtubule amplification mechanisms within k-fibers in metazoans. For complete details on the use and execution of this protocol, please refer to Almeida et al. (2022).1.


Subject(s)
Kinetochores , Muntjacs , Animals , Female , Microtubules , Microscopy
20.
J Cell Biol ; 222(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36459065

ABSTRACT

α/ß-Tubulin posttranslational modifications (PTMs) generate microtubule diversity, but whether they account for cancer cell resistance to microtubule-targeting drugs remains unknown. Here, we performed a pilot dissection of the "cancer tubulin code" using the NCI-60 cancer cell panel. We found that acetylated, detyrosinated, and ∆2-α-tubulin that typically accumulate on stable microtubules were uncoupled in many cancer cells. Acetylated α-tubulin did not affect microtubule dynamics, whereas its levels correlated with, but were not required for, taxol-induced cytotoxicity. In contrast, experimental increase of α-tubulin detyrosination, and/or depletion of the detyrosination-sensitive microtubule-depolymerizing enzyme MCAK, enhanced taxol-induced cytotoxicity by promoting cell death in mitosis and the subsequent interphase, without causing a cumulative effect. Interestingly, only increased detyrosinated α-tubulin aggravated taxol-induced spindle multipolarity. Overall, we identified high α-tubulin acetylation as a potential biomarker for cancer cell response to taxol and uncovered a mechanistic link between α-tubulin detyrosination and the suppression of MCAK activity in taxol-induced cytotoxicity, likely by promoting chromosome missegregation, regardless of spindle defects.


Subject(s)
Kinesins , Microtubules , Paclitaxel , Tubulin , Mitosis , Paclitaxel/pharmacology , Protein Processing, Post-Translational , Tubulin/metabolism , Humans , Cell Line, Tumor , Kinesins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL