Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Comput Biol ; 20(5): e1012059, 2024 May.
Article in English | MEDLINE | ID: mdl-38753883

ABSTRACT

The eukaryotic mRNA life cycle includes transcription, nuclear mRNA export and degradation. To quantify all these processes simultaneously, we perform thiol-linked alkylation after metabolic labeling of RNA with 4-thiouridine (4sU), followed by sequencing of RNA (SLAM-seq) in the nuclear and cytosolic compartments of human cancer cells. We develop a model that reliably quantifies mRNA-specific synthesis, nuclear export, and nuclear and cytosolic degradation rates on a genome-wide scale. We find that nuclear degradation of polyadenylated mRNA is negligible and nuclear mRNA export is slow, while cytosolic mRNA degradation is comparatively fast. Consequently, an mRNA molecule generally spends most of its life in the nucleus. We also observe large differences in the nuclear export rates of different 3'UTR transcript isoforms. Furthermore, we identify genes whose expression is abruptly induced upon metabolic labeling. These transcripts are exported substantially faster than average mRNAs, suggesting the existence of alternative export pathways. Our results highlight nuclear mRNA export as a limiting factor in mRNA metabolism and gene regulation.


Subject(s)
Active Transport, Cell Nucleus , Cell Nucleus , RNA, Messenger , RNA, Messenger/metabolism , RNA, Messenger/genetics , Humans , Cell Nucleus/metabolism , RNA Stability/genetics , 3' Untranslated Regions/genetics , Cell Line, Tumor , Cytosol/metabolism
2.
Angew Chem Int Ed Engl ; 63(32): e202404645, 2024 08 05.
Article in English | MEDLINE | ID: mdl-38801173

ABSTRACT

Phenotypic assays detect small-molecule bioactivity at functionally relevant cellular sites, and inherently cover a variety of targets and mechanisms of action. They can uncover new small molecule-target pairs and may give rise to novel biological insights. By means of an osteoblast differentiation assay which employs a Hedgehog (Hh) signaling agonist as stimulus and which monitors an endogenous marker for osteoblasts, we identified a pyrrolo[3,4-g]quinoline (PQ) pseudo-natural product (PNP) class of osteogenesis inhibitors. The most potent PQ, termed Tafbromin, impairs canonical Hh signaling and modulates osteoblast differentiation through binding to the bromodomain 2 of the TATA-box binding protein-associated factor 1 (TAF1). Tafbromin is the most selective TAF1 bromodomain 2 ligand and promises to be an invaluable tool for the study of biological processes mediated by TAF1(2) bromodomains.


Subject(s)
TATA-Binding Protein Associated Factors , Transcription Factor TFIID , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/chemistry , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/chemistry , Transcription Factor TFIID/antagonists & inhibitors , Humans , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/antagonists & inhibitors , Biological Products/chemistry , Biological Products/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation/drug effects , Quinolines/chemistry , Quinolines/pharmacology , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL