Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Chem Biol ; 17(11): 1157-1167, 2021 11.
Article in English | MEDLINE | ID: mdl-34675414

ABSTRACT

Bivalent proteolysis-targeting chimeras (PROTACs) drive protein degradation by simultaneously binding a target protein and an E3 ligase and forming a productive ternary complex. We hypothesized that increasing binding valency within a PROTAC could enhance degradation. Here, we designed trivalent PROTACs consisting of a bivalent bromo and extra terminal (BET) inhibitor and an E3 ligand tethered via a branched linker. We identified von Hippel-Lindau (VHL)-based SIM1 as a low picomolar BET degrader with preference for bromodomain containing 2 (BRD2). Compared to bivalent PROTACs, SIM1 showed more sustained and higher degradation efficacy, which led to more potent anticancer activity. Mechanistically, SIM1 simultaneously engages with high avidity both BET bromodomains in a cis intramolecular fashion and forms a 1:1:1 ternary complex with VHL, exhibiting positive cooperativity and high cellular stability with prolonged residence time. Collectively, our data along with favorable in vivo pharmacokinetics demonstrate that augmenting the binding valency of proximity-induced modalities can be an enabling strategy for advancing functional outcomes.


Subject(s)
Ubiquitin-Protein Ligases/metabolism , Humans , Proteolysis
2.
J Am Chem Soc ; 144(37): 16930-16952, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36007011

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is one of the most promising targets for Parkinson's disease. LRRK2-targeting strategies have primarily focused on type 1 kinase inhibitors, which, however, have limitations as the inhibited protein can interfere with natural mechanisms, which could lead to undesirable side effects. Herein, we report the development of LRRK2 proteolysis targeting chimeras (PROTACs), culminating in the discovery of degrader XL01126, as an alternative LRRK2-targeting strategy. Initial designs and screens of PROTACs based on ligands for E3 ligases von Hippel-Lindau (VHL), Cereblon (CRBN), and cellular inhibitor of apoptosis (cIAP) identified the best degraders containing thioether-conjugated VHL ligand VH101. A second round of medicinal chemistry exploration led to qualifying XL01126 as a fast and potent degrader of LRRK2 in multiple cell lines, with DC50 values within 15-72 nM, Dmax values ranging from 82 to 90%, and degradation half-lives spanning from 0.6 to 2.4 h. XL01126 exhibits high cell permeability and forms a positively cooperative ternary complex with VHL and LRRK2 (α = 5.7), which compensates for a substantial loss of binary binding affinities to VHL and LRRK2, underscoring its strong degradation performance in cells. Remarkably, XL01126 is orally bioavailable (F = 15%) and can penetrate the blood-brain barrier after either oral or parenteral dosing in mice. Taken together, these experiments qualify XL01126 as a suitable degrader probe to study the noncatalytic and scaffolding functions of LRRK2 in vitro and in vivo and offer an attractive starting point for future drug development.


Subject(s)
Blood-Brain Barrier , Ubiquitin-Protein Ligases , Animals , Mice , Blood-Brain Barrier/metabolism , Leucine , Ligands , Protein Kinase Inhibitors/pharmacology , Proteolysis , Sulfides , Ubiquitin-Protein Ligases/metabolism
3.
Angew Chem Int Ed Engl ; 55(41): 12727-30, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27625316

ABSTRACT

Methionine sulfoxide reductase A (MsrA) is an enzyme involved in redox balance and signaling, and its aberrant activity is implicated in a number of diseases (for example, Alzheimer's disease and cancer). Since there is no simple small molecule tool to monitor MsrA activity in real time in vivo, we aimed at developing one. We have designed a BODIPY-based probe called (S)-Sulfox-1, which is equipped with a reactive sulfoxide moiety. Upon reduction with a model MsrA (E. coli), it exhibits a bathochromic shift in the fluorescence maximum. This feature was utilized for the real-time ratiometric fluorescent imaging of MsrA activity in E. coli cells. Significantly, our probe is capable of capturing natural variations of the enzyme activity in vivo.


Subject(s)
Escherichia coli/enzymology , Fluorescent Dyes/chemistry , Methionine Sulfoxide Reductases/analysis , Optical Imaging , Escherichia coli/cytology , Humans , Methionine Sulfoxide Reductases/metabolism , Models, Molecular , Molecular Structure
4.
Nat Commun ; 14(1): 6345, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816714

ABSTRACT

The Src homology 2 (SH2) domain recognizes phosphotyrosine (pY) post translational modifications in partner proteins to trigger downstream signaling. Drug discovery efforts targeting the SH2 domains have long been stymied by the poor drug-like properties of phosphate and its mimetics. Here, we use structure-based design to target the SH2 domain of the E3 ligase suppressor of cytokine signaling 2 (SOCS2). Starting from the highly ligand-efficient pY amino acid, a fragment growing approach reveals covalent modification of Cys111 in a co-crystal structure, which we leverage to rationally design a cysteine-directed electrophilic covalent inhibitor MN551. We report the prodrug MN714 containing a pivaloyloxymethyl (POM) protecting group and evidence its cell permeability and capping group unmasking using cellular target engagement and in-cell 19F NMR spectroscopy. Covalent engagement at Cys111 competitively blocks recruitment of cellular SOCS2 protein to its native substrate. The qualified inhibitors of SOCS2 could find attractive applications as chemical probes to understand the biology of SOCS2 and its CRL5 complex, and as E3 ligase handles in proteolysis targeting chimera (PROTACs) to induce targeted protein degradation.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Phosphotyrosine , Ligands , src Homology Domains
5.
ChemMedChem ; 17(20): e202200343, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36040095

ABSTRACT

The bromodomain and extra-terminal (BET) family of proteins includes BRD2, BRD3, BRD4, and the testis-specific protein, BRDT, each containing two N-terminal tandem bromodomain (BRD) modules. Potent and selective inhibitors targeting the two bromodomains are required to elucidate their biological role(s), with potential clinical applications. In this study, we designed and synthesized a series of benzimidazole-6-sulfonamides starting from the azobenzene compounds MS436 (7 a) and MS611 (7 b) that exhibited preference for the first (BD1) over the second (BD2) BRD of BET family members. The most-promising compound (9 a) showed good binding potency and improved metabolic stability and selectivity towards BD1 with respect to the parent compounds.


Subject(s)
Nuclear Proteins , Sulfonamides , Male , Humans , Sulfonamides/pharmacology , Benzo(a)pyrene , Transcription Factors/metabolism , Imidazoles/pharmacology , Benzimidazoles/pharmacology , Cell Cycle Proteins/metabolism
6.
Oncogene ; 40(22): 3799-3814, 2021 06.
Article in English | MEDLINE | ID: mdl-33958721

ABSTRACT

Despite the development of new targeted and immune therapies, the prognosis of metastatic melanoma remains bleak. Therefore, it is critical to better understand the mechanisms controlling advanced melanoma to develop more effective treatment regimens. Hedgehog/GLI (HH/GLI) signaling inhibitors targeting the central pathway transducer Smoothened (SMO) have shown to be clinical efficacious in skin cancer; however, several mechanisms of non-canonical HH/GLI pathway activation limit their efficacy. Here, we identify a novel SOX2-BRD4 transcriptional complex driving the expression of GLI1, the final effector of the HH/GLI pathway, providing a novel mechanism of non-canonical SMO-independent activation of HH/GLI signaling in melanoma. Consistently, we find a positive correlation between the expression of GLI1 and SOX2 in human melanoma samples and cell lines. Further, we show that combined targeting of canonical HH/GLI pathway with the SMO inhibitor MRT-92 and of the SOX2-BRD4 complex using a potent Proteolysis Targeted Chimeras (PROTACs)-derived BRD4 degrader (MZ1), yields a synergistic anti-proliferative effect in melanoma cells independently of their BRAF, NRAS, and NF1 mutational status, with complete abrogation of GLI1 expression. Combination of MRT-92 and MZ1 strongly potentiates the antitumor effect of either drug as single agents in an orthotopic melanoma model. Together, our data provide evidence of a novel mechanism of non-canonical activation of GLI1 by the SOX2-BRD4 transcriptional complex, and describe the efficacy of a new combinatorial treatment for a subset of melanomas with an active SOX2-BRD4-GLI1 axis.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Dipeptides/pharmacology , Guanidines/pharmacology , Hedgehog Proteins/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/pharmacology , Melanoma/drug therapy , SOXB1 Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Zinc Finger Protein GLI1/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Dipeptides/administration & dosage , Drug Synergism , Female , Guanidines/administration & dosage , Hedgehog Proteins/metabolism , Heterocyclic Compounds, 3-Ring/administration & dosage , Humans , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Nude , Molecular Targeted Therapy , Signal Transduction/drug effects , Smoothened Receptor/antagonists & inhibitors , Spheroids, Cellular , Xenograft Model Antitumor Assays
7.
RSC Med Chem ; 12(1): 8-23, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-34041480

ABSTRACT

Phosphotyrosine-containing compounds attract significant attention due to their potential to modulate signalling pathways by binding to phospho-writers, erasers and readers such as SH2 and PTB domain containing proteins. Phosphotyrosine derivatives provide useful chemical tools to study protein phosphorylation/dephosphorylation, and as such represent attractive starting points for the development of binding ligands and chemical probes to study biology, and for inhibitor and degrader drug design. To overcome enzymatic lability of the phosphate group, physiologically stable phosphonate-based phosphotyrosine analogues find utility in a wide range of applications. This review covers advances over the last decade in the design of phosphotyrosine and its phosphonate-based derivatives, highlights the improved and expanded synthetic toolbox, and illustrates applications in medicinal chemistry.

8.
FEBS J ; 286(20): 4024-4035, 2019 10.
Article in English | MEDLINE | ID: mdl-31166082

ABSTRACT

Nonenzymatic oxidative processes in living organisms are among the inevitable consequences of respiration and environmental conditions. These oxidative processes can lead to the formation of two stereoisomers (R and S) of methionine sulfoxide, and the redox balance between methionine and methionine sulfoxide in proteins has profound implications on their function. Methionine oxidation can be reverted enzymatically by methionine sulfoxide reductases (Msrs). The two enzyme classes known to fulfill this role are MsrA, reducing the (S)-isomer, and MsrB, reducing the (R)-isomer of methionine sulfoxide. They are strictly stereoselective and conserved throughout the tree of life. Under stress conditions such as stationary phase and nutrient starvation, Escherichia coli upregulates the expression of MsrA but a similar effect has not been described for MsrB, raising the conundrum of which pathway enables reduction of the (R)-isomer of methionine sulfoxide in these conditions. Using the recently developed chiral fluorescent probes Sulfox-1, we show that in stationary phase-stressed E. coli, MsrA does have a stereocomplementary activity reducing the (R)-isomer of methionine sulfoxide. However, this activity is not provided by MsrB as expected, but instead by the DMSO reductase complex DmsABC, widely conserved in bacteria. This finding reveals an unexpected diversity in the metabolic enzymes of redox regulation concerning methionine, which should be taken into account in any antibacterial strategies exploiting oxidative stress. DATABASE: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013610.


Subject(s)
Escherichia coli/enzymology , Fluorescent Dyes/chemistry , Iron-Sulfur Proteins/metabolism , Methionine Sulfoxide Reductases/metabolism , Methionine/analogs & derivatives , Methionine/chemistry , Oxidative Stress , Oxidoreductases/metabolism , Iron-Sulfur Proteins/chemistry , Methionine/metabolism , Methionine Sulfoxide Reductases/chemistry , Oxidation-Reduction , Oxidoreductases/chemistry , Protein Conformation , Proteomics
9.
Nat Commun ; 10(1): 2534, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31182716

ABSTRACT

The suppressor of cytokine signaling 2 (SOCS2) acts as substrate recognition subunit of a Cullin5 E3 ubiquitin ligase complex. SOCS2 binds to phosphotyrosine-modified epitopes as degrons for ubiquitination and proteasomal degradation, yet the molecular basis of substrate recognition has remained elusive. Here, we report co-crystal structures of SOCS2-ElonginB-ElonginC in complex with phosphorylated peptides from substrates growth hormone receptor (GHR-pY595) and erythropoietin receptor (EpoR-pY426) at 1.98 Å and 2.69 Å, respectively. Both peptides bind in an extended conformation recapitulating the canonical SH2 domain-pY pose, but capture different conformations of the EF loop via specific hydrophobic interactions. The flexible BG loop is fully defined in the electron density, and does not contact the substrate degron directly. Cancer-associated SNPs located around the pY pocket weaken substrate-binding affinity in biophysical assays. Our findings reveal insights into substrate recognition and specificity by SOCS2, and provide a blueprint for small molecule ligand design.


Subject(s)
Suppressor of Cytokine Signaling Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , Crystallography, X-Ray , Humans , Phosphotyrosine/chemistry , Polymorphism, Single Nucleotide , Protein Conformation , Receptors, Erythropoietin/chemistry , Receptors, Somatotropin/chemistry , Sequence Alignment , Substrate Specificity , Suppressor of Cytokine Signaling Proteins/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL