Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Genes Dev ; 31(11): 1109-1121, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28698296

ABSTRACT

A key feature of high-grade serous ovarian carcinoma (HGSOC) is frequent amplification of the 3q26 locus harboring PRKC-ι (PRKCI). Here, we show that PRKCI is also expressed in early fallopian tube lesions, called serous tubal intraepithelial carcinoma. Transgenic mouse studies establish PRKCI as an ovarian cancer-specific oncogene. Mechanistically, we show that the oncogenic activity of PRKCI relates in part to the up-regulation of TNFα to promote an immune-suppressive tumor microenvironment characterized by an abundance of myeloid-derived suppressor cells and inhibition of cytotoxic T-cell infiltration. Furthermore, system-level and functional analyses identify YAP1 as a downstream effector in tumor progression. In human ovarian cancers, high PRKCI expression also correlates with high expression of TNFα and YAP1 and low infiltration of cytotoxic T cells. The PRKCI-YAP1 regulation of the tumor immunity provides a therapeutic strategy for highly lethal ovarian cancer.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Immune Tolerance/genetics , Isoenzymes/genetics , Isoenzymes/immunology , Ovarian Neoplasms/genetics , Protein Kinase C/genetics , Protein Kinase C/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Cell Movement/genetics , Cytokines/genetics , Female , Humans , Isoenzymes/metabolism , Mice , Mice, Transgenic , Ovarian Neoplasms/immunology , Ovarian Neoplasms/physiopathology , Phosphoproteins/metabolism , Protein Kinase C/metabolism , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology , Tumor Necrosis Factor-alpha/metabolism , YAP-Signaling Proteins
2.
EMBO Mol Med ; 10(10)2018 10.
Article in English | MEDLINE | ID: mdl-30120146

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is a recognized eukaryotic cell differentiation program that is also observed in association with invasive tumors. Partial EMT program in carcinomas imparts cancer cells with mesenchymal-like features and is proposed as essential for metastasis. Precise determination of the frequency of partial EMT program in cancer cells in tumors and its functional role in metastases needs unraveling. Here, we employed mesenchymal cell reporter mice driven by αSMA-Cre and Fsp1-Cre with genetically engineered mice that develop spontaneous pancreatic ductal adenocarcinoma (PDAC) to monitor partial EMT program. Both αSMA- and Fsp1-Cre-mediated partial EMT programs were observed in the primary tumors. The established metastases were primarily composed of cancer cells without evidence for a partial EMT program, as assessed by our fate mapping approach. In contrast, metastatic cancer cells exhibiting a partial EMT program were restricted to isolated single cancer cells or micrometastases (3-5 cancer cells). Collectively, our studies identify large metastatic nodules with preserved epithelial phenotype and potentially unravel a novel metastasis program in PDAC.


Subject(s)
Epithelial-Mesenchymal Transition , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/physiopathology , Actins/genetics , Actins/metabolism , Animals , Disease Models, Animal , Genes, Reporter , Integrases/genetics , Integrases/metabolism , Mice , Neoplasm Metastasis/pathology , Neoplasm Metastasis/physiopathology , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL