Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Am Chem Soc ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39163211

ABSTRACT

Chiral hybrid organic-inorganic metal halides are highly promising chiroptoelectronic materials with potential applications in several fields, such as circularly polarized photodetectors, second-order nonlinear optics, and spin-selective devices. However, the ability of manipulating the chiroptical response and the chirality transfer from the organic ligands require one to shed light on structure-property correlations. Herein, we devised and prepared two novel Ge-based chiral hybrid organic-inorganic metal halides showing a different structural topology, namely, a 1D and a 2D arrangement, but composed of the same chemical building blocks: (R/S-ClMBA)3GeI5 and (R/S-ClMBA)2GeI4. Through a combined experimental and computational investigation on these samples, we discuss the impact of structural dimensionality on chiroptical properties, chirality transfer, and spin-splitting effects; also, we highlight the impact of structural distortions. The approach presented here paves the way for a solid understanding of the factors affecting the properties of chiral metal halides, thus allowing a future wise materials engineering.

2.
Angew Chem Int Ed Engl ; 63(10): e202318557, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38189576

ABSTRACT

Chiral perovskites possess a huge applicative potential in several areas of optoelectronics and spintronics. The development of novel lead-free perovskites with tunable properties is a key topic of current research. Herein, we report a novel lead-free chiral perovskite, namely (R/S-)ClMBA2 SnI4 (ClMBA=1-(4-chlorophenyl)ethanamine) and the corresponding racemic system. ClMBA2 SnI4 samples exhibit a low band gap (2.12 eV) together with broad emission extending in the red region of the spectrum (∼1.7 eV). Chirality transfer from the organic ligand induces chiroptical activity in the 465-530 nm range. Density functional theory calculations show a Rashba type band splitting for the chiral samples and no band splitting for the racemic isomer. Self-trapped exciton formation is at the origin of the large Stokes shift in the emission. Careful correlation with analogous lead and lead-free 2D chiral perovskites confirms the role of the symmetry-breaking distortions in the inorganic layers associated with the ligands as the source of the observed chiroptical properties providing also preliminary structure-property correlation in 2D chiral perovskites.

3.
Chem Commun (Camb) ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109614

ABSTRACT

Chiral 2D and quasi-2D hybrid organic-inorganic perovskites (HOIPs) are emerging as promising materials for a variety of applications principally related to optoelectronics and spintronics, thanks to the combined benefits deriving from both the chiral cation and the perovskite structure. Since its recent birth, this research field is tremendously growing, focalizing on the chemical composition tuning to unveil its influence on the related functional properties as well as on developing devices for practical applications. In this review, we focused on the properties of 2D and quasi-2D chiral HOIPs, firstly providing an overview on their chiroptical behaviour followed by their potential exploitation in devices investigated so far for various applicative fields.

SELECTION OF CITATIONS
SEARCH DETAIL