Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Mol Cell ; 82(15): 2730-2731, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931036

ABSTRACT

Transcription-coupled cellular stress is associated with several physiological and pathological features, including membraneless biomolecular condensates. In the study by Yasuhara et al., the authors have described specific nuclear condensates in multiple cell types upon inhibition of RNA polymerase II transcription, discovered their main constituent proteins, and elucidated their functions.


Subject(s)
Organelles , Proteins , Organelles/metabolism , Proteins/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
2.
Adv Exp Med Biol ; 1210: 57-66, 2019.
Article in English | MEDLINE | ID: mdl-31900904

ABSTRACT

Studies employing whole genome and exome sequencing have revealed two remarkable features of prostate cancer (PCa)-the overall low mutation rates, and high rates of genomic rearrangements resulting in recurrent gene fusions. Genomic rearrangements involving the ETS transcription factor family genes are early driver events in PCa. These rearrangements typically involve the fusion of androgen-regulated transcriptionally active genes with the ETS genes (ERG, ETV1, ETV4 and ETV5), resulting in over-expression of fusion genes. The most prevalent ETS gene rearrangement, which is observed in >50% of PCa, involves the fusion of the androgen receptor (AR) target gene, TMPRSS2, with the ERG proto-oncogene, resulting in the formation of the TMPRSS2-ERG gene fusion. In this chapter, we consider the multitude of factors that influence the formation of recurrent genomic rearrangements in PCa. Understanding the mechanistic basis of gene fusion formation will shed light on unique features of PCa etiology and should impact several aspects of clinical disease management, ranging from prevention and early diagnosis to therapeutic targeting.


Subject(s)
Genome, Human/genetics , Genomics , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-ets/genetics , Recombination, Genetic/genetics , Humans , Male , Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/therapy , Proto-Oncogene Mas
3.
Genome Biol ; 25(1): 15, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38217027

ABSTRACT

The three-dimensional genome organization influences diverse nuclear processes. Here we present Chromatin Interaction Predictor (ChIPr), a suite of regression models based on deep neural networks, random forest, and gradient boosting to predict cohesin-mediated chromatin interaction strength between any two loci in the genome. The predictions of ChIPr correlate well with ChIA-PET data in four cell lines. The standard ChIPr model requires three experimental inputs: ChIP-Seq signals for RAD21, H3K27ac, and H3K27me3 but works well with just RAD21 signal. Integrative analysis reveals novel insights into the role of CTCF motif, its orientation, and CTCF binding on cohesin-mediated chromatin interactions.


Subject(s)
Chromatin , Cohesins , CCCTC-Binding Factor/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
4.
J Clin Invest ; 133(19)2023 10 02.
Article in English | MEDLINE | ID: mdl-37581937

ABSTRACT

Colorectal cancer (CRC) at advanced stages is rarely curable, underscoring the importance of exploring the mechanism of CRC progression and invasion. NOD-like receptor family member NLRP12 was shown to suppress colorectal tumorigenesis, but the precise mechanism was unknown. Here, we demonstrate that invasive adenocarcinoma development in Nlrp12-deficient mice is associated with elevated expression of genes involved in proliferation, matrix degradation, and epithelial-mesenchymal transition. Signaling pathway analysis revealed higher activation of the Wnt/ß-catenin pathway, but not NF-κB and MAPK pathways, in the Nlrp12-deficient tumors. Using Nlrp12-conditional knockout mice, we revealed that NLRP12 downregulates ß-catenin activation in intestinal epithelial cells, thereby suppressing colorectal tumorigenesis. Consistent with this, Nlrp12-deficient intestinal organoids and CRC cells showed increased proliferation, accompanied by higher activation of ß-catenin in vitro. With proteomic studies, we identified STK38 as an interacting partner of NLRP12 involved in the inhibition of phosphorylation of GSK3ß, leading to the degradation of ß-catenin. Consistently, the expression of NLRP12 was significantly reduced, while p-GSK3ß and ß-catenin were upregulated in mouse and human colorectal tumor tissues. In summary, NLRP12 is a potent negative regulator of the Wnt/ß-catenin pathway, and the NLRP12/STK38/GSK3ß signaling axis could be a promising therapeutic target for CRC.


Subject(s)
Colorectal Neoplasms , beta Catenin , Humans , Mice , Animals , beta Catenin/genetics , beta Catenin/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Proteomics , Wnt Signaling Pathway , Cell Transformation, Neoplastic/genetics , Carcinogenesis/genetics , Colorectal Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation , Cell Movement , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
5.
NPJ Precis Oncol ; 7(1): 11, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36693944

ABSTRACT

Targeted therapies, such as endocrine therapies (ET), can exert selective pressure on cancer cells and promote adaptations that confer treatment resistance. In this study, we show that ET resistance in breast cancer drives radiation resistance through reprogramming of DNA repair pathways. We also show that pharmacological bromodomain and extraterminal domain inhibition reverses pathological DNA repair reprogramming in ET-resistant breast tumors and overcomes resistance to radiation therapy.

6.
Oncogene ; 42(30): 2347-2359, 2023 07.
Article in English | MEDLINE | ID: mdl-37355762

ABSTRACT

Therapy resistance to second-generation androgen receptor (AR) antagonists, such as enzalutamide, is common in patients with advanced prostate cancer (PCa). To understand the metabolic alterations involved in enzalutamide resistance, we performed metabolomic, transcriptomic, and cistromic analyses of enzalutamide-sensitive and -resistant PCa cells, xenografts, patient-derived organoids, patient-derived explants, and tumors. We noted dramatically higher basal and inducible levels of reactive oxygen species (ROS) in enzalutamide-resistant PCa and castration-resistant PCa (CRPC), in comparison to enzalutamide-sensitive PCa cells or primary therapy-naive tumors respectively. Unbiased metabolomic evaluation identified that glutamine metabolism was consistently upregulated in enzalutamide-resistant PCa cells and CRPC tumors. Stable isotope tracing studies suggest that this enhanced glutamine metabolism drives an antioxidant program that allows these cells to tolerate higher basal levels of ROS. Inhibition of glutamine metabolism with either a small-molecule glutaminase inhibitor or genetic knockout of glutaminase enhanced ROS levels, and blocked the growth of enzalutamide-resistant PCa. The critical role of compensatory antioxidant pathways in maintaining enzalutamide-resistant PCa cells was validated by targeting another antioxidant program driver, ferredoxin 1. Taken together, our data identify a metabolic need to maintain antioxidant programs and a potentially targetable metabolic vulnerability in enzalutamide-resistant PCa.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/genetics , Antioxidants/pharmacology , Glutaminase , Glutamine , Reactive Oxygen Species , Drug Resistance, Neoplasm/genetics , Nitriles , Androgen Receptor Antagonists/pharmacology , Cell Line, Tumor
7.
Cancer Discov ; 12(12): 2838-2855, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36108240

ABSTRACT

Prostate cancer is one of the most heritable human cancers. Genome-wide association studies have identified at least 185 prostate cancer germline risk alleles, most noncoding. We used integrative three-dimensional (3D) spatial genomics to identify the chromatin interaction targets of 45 prostate cancer risk alleles, 31 of which were associated with the transcriptional regulation of target genes in 565 localized prostate tumors. To supplement these 31, we verified transcriptional targets for 56 additional risk alleles using linear proximity and linkage disequilibrium analysis in localized prostate tumors. Some individual risk alleles influenced multiple target genes; others specifically influenced only distal genes while leaving proximal ones unaffected. Several risk alleles exhibited widespread germline-somatic interactions in transcriptional regulation, having different effects in tumors with loss of PTEN or RB1 relative to those without. These data clarify functional prostate cancer risk alleles in large linkage blocks and outline a strategy to model multidimensional transcriptional regulation. SIGNIFICANCE: Many prostate cancer germline risk alleles are enriched in the noncoding regions of the genome and are hypothesized to regulate transcription. We present a 3D genomics framework to unravel risk SNP function and describe the widespread germline-somatic interplay in transcription control. This article is highlighted in the In This Issue feature, p. 2711.


Subject(s)
Genome-Wide Association Study , Prostatic Neoplasms , Male , Humans , Alleles , Transcriptome , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Genomics/methods , Mutation , Germ Cells/pathology , Polymorphism, Single Nucleotide
8.
J Clin Invest ; 132(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35703180

ABSTRACT

FOXA2 encodes a transcription factor mutated in 10% of endometrial cancers (ECs), with a higher mutation rate in aggressive variants. FOXA2 has essential roles in embryonic and uterine development. However, FOXA2's role in EC is incompletely understood. Functional investigations using human and mouse EC cell lines revealed that FOXA2 controls endometrial epithelial gene expression programs regulating cell proliferation, adhesion, and endometrial-epithelial transition. In live animals, conditional inactivation of Foxa2 or Pten alone in endometrial epithelium did not result in ECs, but simultaneous inactivation of both genes resulted in lethal ECs with complete penetrance, establishing potent synergism between Foxa2 and PI3K signaling. Studies in tumor-derived cell lines and organoids highlighted additional invasion and cell growth phenotypes associated with malignant transformation and identified key mediators, including Myc and Cdh1. Transcriptome and cistrome analyses revealed that FOXA2 broadly controls gene expression programs through modification of enhancer activity in addition to regulating specific target genes, rationalizing its tumor suppressor functions. By integrating results from our cell lines, organoids, animal models, and patient data, our findings demonstrated that FOXA2 is an endometrial tumor suppressor associated with aggressive disease and with shared commonalities among its roles in endometrial function and carcinogenesis.


Subject(s)
Endometrial Neoplasms , Epithelial-Mesenchymal Transition , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Endometrial Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Humans , Mice , Phosphatidylinositol 3-Kinases
9.
JCI Insight ; 7(9)2022 05 09.
Article in English | MEDLINE | ID: mdl-35349486

ABSTRACT

The bromodomain and extraterminal (BET) family of chromatin reader proteins bind to acetylated histones and regulate gene expression. The development of BET inhibitors (BETi) has expanded our knowledge of BET protein function beyond transcriptional regulation and has ushered several prostate cancer (PCa) clinical trials. However, BETi as a single agent is not associated with antitumor activity in patients with castration-resistant prostate cancer (CRPC). We hypothesized novel combinatorial strategies are likely to enhance the efficacy of BETi. By using PCa patient-derived explants and xenograft models, we show that BETi treatment enhanced the efficacy of radiation therapy (RT) and overcame radioresistance. Mechanistically, BETi potentiated the activity of RT by blocking DNA repair. We also report a synergistic relationship between BETi and topoisomerase I (TOP1) inhibitors (TOP1i). We show that the BETi OTX015 synergized with the new class of synthetic noncamptothecin TOP1i, LMP400 (indotecan), to block tumor growth in aggressive CRPC xenograft models. Mechanistically, BETi potentiated the antitumor activity of TOP1i by disrupting replication fork stability. Longitudinal analysis of patient tumors indicated that TOP1 transcript abundance increased as patients progressed from hormone-sensitive prostate cancer to CRPC. TOP1 was highly expressed in metastatic CRPC, and its expression correlated with the expression of BET family genes. These studies open new avenues for the rational combinatorial treatment of aggressive PCa.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Cell Cycle Proteins/genetics , Cell Line, Tumor , Histones/metabolism , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Transcription Factors/genetics
10.
JCI Insight ; 7(17)2022 09 08.
Article in English | MEDLINE | ID: mdl-35881485

ABSTRACT

Acquired mutations in the ligand-binding domain (LBD) of the gene encoding estrogen receptor α (ESR1) are common mechanisms of endocrine therapy resistance in patients with metastatic ER+ breast cancer. The ESR1 Y537S mutation, in particular, is associated with development of resistance to most endocrine therapies used to treat breast cancer. Employing a high-throughput screen of nearly 1,200 Federal Drug Administration-approved (FDA-approved) drugs, we show that OTX015, a bromodomain and extraterminal domain (BET) inhibitor, is one of the top suppressors of ESR1 mutant cell growth. OTX015 was more efficacious than fulvestrant, a selective ER degrader, in inhibiting ESR1 mutant xenograft growth. When combined with abemaciclib, a CDK4/6 inhibitor, OTX015 induced more potent tumor regression than current standard-of-care treatment of abemaciclib + fulvestrant. OTX015 has preferential activity against Y537S mutant breast cancer cells and blocks their clonal selection in competition studies with WT cells. Thus, BET inhibition has the potential to both prevent and overcome ESR1 mutant-induced endocrine therapy resistance in breast cancer.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation , Female , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Humans , Mutation , Protein Domains , Transcription, Genetic
11.
Nat Rev Cancer ; 20(8): 455-469, 2020 08.
Article in English | MEDLINE | ID: mdl-32546840

ABSTRACT

Prostate cancer is a major cause of cancer morbidity and mortality. Intra-prostatic inflammation is a risk factor for prostate carcinogenesis, with diet, chemical injury and an altered microbiome being causally implicated. Intra-prostatic inflammatory cell recruitment and expansion can ultimately promote DNA double-strand breaks and androgen receptor activation in prostate epithelial cells. The activation of the senescence-associated secretory phenotype fuels further 'inflammatory storms', with free radicals leading to further DNA damage. This drives the overexpression of DNA repair and tumour suppressor genes, rendering these genes susceptible to mutagenic insults, with carcinogenesis accelerated by germline DNA repair gene defects. We provide updates on recent advances in elucidating prostate carcinogenesis and explore novel therapeutic and prevention strategies harnessing these discoveries.


Subject(s)
Carcinogenesis/immunology , Inflammation/immunology , Prostate/immunology , Prostatic Neoplasms/immunology , Receptors, Androgen/immunology , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Chronic Disease , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA Damage/immunology , DNA Repair/genetics , DNA Repair/immunology , Diet/adverse effects , Dietary Fats/adverse effects , Dietary Fats/immunology , Humans , Inflammation/etiology , Inflammation/genetics , Male , Microbiota/immunology , Obesity/complications , Obesity/immunology , Paracrine Communication/immunology , Prostatic Neoplasms/etiology , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
12.
J Clin Invest ; 130(8): 3987-4005, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32343676

ABSTRACT

Transcriptional dysregulation is a hallmark of prostate cancer (PCa). We mapped the RNA polymerase II-associated (RNA Pol II-associated) chromatin interactions in normal prostate cells and PCa cells. We discovered thousands of enhancer-promoter, enhancer-enhancer, as well as promoter-promoter chromatin interactions. These transcriptional hubs operate within the framework set by structural proteins - CTCF and cohesins - and are regulated by the cooperative action of master transcription factors, such as the androgen receptor (AR) and FOXA1. By combining analyses from metastatic castration-resistant PCa (mCRPC) specimens, we show that AR locus amplification contributes to the transcriptional upregulation of the AR gene by increasing the total number of chromatin interaction modules comprising the AR gene and its distal enhancer. We deconvoluted the transcription control modules of several PCa genes, notably the biomarker KLK3, lineage-restricted genes (KRT8, KRT18, HOXB13, FOXA1, ZBTB16), the drug target EZH2, and the oncogene MYC. By integrating clinical PCa data, we defined a germline-somatic interplay between the PCa risk allele rs684232 and the somatically acquired TMPRSS2-ERG gene fusion in the transcriptional regulation of multiple target genes - VPS53, FAM57A, and GEMIN4. Our studies implicate changes in genome organization as a critical determinant of aberrant transcriptional regulation in PCa.


Subject(s)
Biomarkers, Tumor , Chromatin , Gene Expression Regulation, Neoplastic , Neoplasm Proteins , Prostatic Neoplasms , RNA Polymerase II/metabolism , Response Elements , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Chromatin/pathology , Humans , Male , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA Polymerase II/genetics
13.
Nat Med ; 25(10): 1615-1626, 2019 10.
Article in English | MEDLINE | ID: mdl-31591588

ABSTRACT

Oncogenesis is driven by germline, environmental and stochastic factors. It is unknown how these interact to produce the molecular phenotypes of tumors. We therefore quantified the influence of germline polymorphisms on the somatic epigenome of 589 localized prostate tumors. Predisposition risk loci influence a tumor's epigenome, uncovering a mechanism for cancer susceptibility. We identified and validated 1,178 loci associated with altered methylation in tumoral but not nonmalignant tissue. These tumor methylation quantitative trait loci influence chromatin structure, as well as RNA and protein abundance. One prominent tumor methylation quantitative trait locus is associated with AKT1 expression and is predictive of relapse after definitive local therapy in both discovery and validation cohorts. These data reveal intricate crosstalk between the germ line and the epigenome of primary tumors, which may help identify germline biomarkers of aggressive disease to aid patient triage and optimize the use of more invasive or expensive diagnostic assays.


Subject(s)
DNA Methylation/genetics , Epigenome/genetics , Germ-Line Mutation/genetics , Prostatic Neoplasms/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genome, Human/genetics , Humans , Male , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/genetics , Quantitative Trait Loci/genetics
14.
Clin Cancer Res ; 24(13): 3149-3162, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29555663

ABSTRACT

Purpose: Persistent androgen receptor (AR) signaling drives castration-resistant prostate cancer (CRPC) and confers resistance to AR-targeting therapies. Novel therapeutic strategies to overcome this are urgently required. We evaluated how bromodomain and extra-terminal (BET) protein inhibitors (BETi) abrogate aberrant AR signaling in CRPC.Experimental Design: We determined associations between BET expression, AR-driven transcription, and patient outcome; and the effect and mechanism by which chemical BETi (JQ1 and GSK1210151A; I-BET151) and BET family protein knockdown regulates AR-V7 expression and AR signaling in prostate cancer models.Results: Nuclear BRD4 protein expression increases significantly (P ≤ 0.01) with castration resistance in same patient treatment-naïve (median H-score; interquartile range: 100; 100-170) and CRPC (150; 110-200) biopsies, with higher expression at diagnosis associating with worse outcome (HR, 3.25; 95% CI, 1.50-7.01; P ≤ 0.001). BRD2, BRD3, and BRD4 RNA expression in CRPC biopsies correlates with AR-driven transcription (all P ≤ 0.001). Chemical BETi, and combined BET family protein knockdown, reduce AR-V7 expression and AR signaling. This was not recapitulated by C-MYC knockdown. In addition, we show that BETi regulates RNA processing thereby reducing alternative splicing and AR-V7 expression. Furthermore, BETi reduce growth of prostate cancer cells and patient-derived organoids with known AR mutations, AR amplification and AR-V7 expression. Finally, BETi, unlike enzalutamide, decreases persistent AR signaling and growth (P ≤ 0.001) of a patient-derived xenograft model of CRPC with AR amplification and AR-V7 expression.Conclusions: BETi merit clinical evaluation as inhibitors of AR splicing and function, with trials demonstrating their blockade in proof-of-mechanism pharmacodynamic studies. Clin Cancer Res; 24(13); 3149-62. ©2018 AACR.


Subject(s)
Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Proteins/antagonists & inhibitors , Proteins/metabolism , Alternative Splicing , Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Cell Cycle Proteins , Cell Line, Tumor , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Prognosis , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Isoforms , RNA, Small Interfering/genetics , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Treatment Outcome
15.
Cell Rep ; 22(3): 796-808, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29346775

ABSTRACT

BRD4 belongs to the bromodomain and extraterminal (BET) family of chromatin reader proteins that bind acetylated histones and regulate gene expression. Pharmacological inhibition of BRD4 by BET inhibitors (BETi) has indicated antitumor activity against multiple cancer types. We show that BRD4 is essential for the repair of DNA double-strand breaks (DSBs) and mediates the formation of oncogenic gene rearrangements by engaging the non-homologous end joining (NHEJ) pathway. Mechanistically, genome-wide DNA breaks are associated with enhanced acetylation of histone H4, leading to BRD4 recruitment, and stable establishment of the DNA repair complex. In support of this, we also show that, in clinical tumor samples, BRD4 protein levels are negatively associated with outcome after prostate cancer (PCa) radiation therapy. Thus, in addition to regulating gene expression, BRD4 is also a central player in the repair of DNA DSBs, with significant implications for cancer therapy.


Subject(s)
DNA End-Joining Repair , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/genetics , Transcription Factors/genetics , Acetylation , Cell Cycle Proteins , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , DNA Damage , Gene Fusion , Gene Rearrangement , Histones/genetics , Histones/metabolism , Humans , Male , Nuclear Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcription Factors/metabolism
16.
Cancer Res ; 77(18): 4745-4754, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28754673

ABSTRACT

In prostate cancer, androgen deprivation therapy (ADT) enhances the cytotoxic effects of radiotherapy. This effect is associated with weakening of the DNA damage response (DDR) normally supported by the androgen receptor. As a significant number of patients will fail combined ADT and radiotherapy, we hypothesized that DDR may be driven by androgen receptor splice variants (ARV) induced by ADT. Investigating this hypothesis, we found that ARVs increase the clonogenic survival of prostate cancer cells after irradiation in an ADT-independent manner. Notably, prostate cancer cell irradiation triggers binding of ARV to the catalytic subunit of the critical DNA repair kinase DNA-PK. Pharmacologic inhibition of DNA-PKc blocked this interaction, increased DNA damage, and elevated prostate cancer cell death after irradiation. Our findings provide a mechanistic rationale for therapeutic targeting of DNA-PK in the context of combined ADT and radiotherapy as a strategy to radiosensitize clinically localized prostate cancer. Cancer Res; 77(18); 4745-54. ©2017 AACR.


Subject(s)
Androgen Antagonists/pharmacology , DNA Repair/genetics , DNA-Activated Protein Kinase/antagonists & inhibitors , Prostatic Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Receptors, Androgen/genetics , Animals , Antineoplastic Agents/pharmacology , Benzamides , DNA Repair/radiation effects , DNA-Activated Protein Kinase/metabolism , Humans , Male , Mice , Mice, Nude , Nitriles , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/radiotherapy , Radiation, Ionizing , Receptors, Androgen/chemistry , Receptors, Androgen/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
Cell Rep ; 17(10): 2620-2631, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27926866

ABSTRACT

Approximately 50% of prostate cancers are associated with gene fusions of the androgen-regulated gene TMPRSS2 to the oncogenic erythroblast transformation-specific (ETS) transcription factor ERG. The three-dimensional proximity of TMPRSS2 and ERG genes, in combination with DNA breaks, facilitates the formation of TMPRSS2-ERG gene fusions. However, the origins of DNA breaks that underlie gene fusion formation in prostate cancers are far from clear. We demonstrate a role for inflammation-induced oxidative stress in the formation of DNA breaks leading to recurrent TMPRSS2-ERG gene fusions. The transcriptional status and epigenetic features of the target genes influence this effect. Importantly, inflammation-induced de novo genomic rearrangements are blocked by homologous recombination (HR) and promoted by non-homologous end-joining (NHEJ) pathways. In conjunction with the association of proliferative inflammatory atrophy (PIA) with human prostate cancer, our results support a working model in which recurrent genomic rearrangements induced by inflammatory stimuli lead to the development of prostate cancer.


Subject(s)
Inflammation/genetics , Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/genetics , Serine Endopeptidases/genetics , Androgens/genetics , Cell Line, Tumor , DNA Breaks , DNA End-Joining Repair/genetics , DNA-Binding Proteins/genetics , Humans , Inflammation/complications , Inflammation/pathology , Male , Oxidative Stress/genetics , Prostatic Neoplasms/complications , Prostatic Neoplasms/pathology , Transcriptional Regulator ERG/genetics
SELECTION OF CITATIONS
SEARCH DETAIL