Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Nat Immunol ; 23(9): 1379-1392, 2022 09.
Article in English | MEDLINE | ID: mdl-36002648

ABSTRACT

Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I → KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.


Subject(s)
Breast Neoplasms , Epigenesis, Genetic , Histone Demethylases , Interferon Type I , Anthracyclines/metabolism , Anthracyclines/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Histone Demethylases/metabolism , Humans , Interferon Type I/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
3.
Trends Genet ; 38(8): 787-788, 2022 08.
Article in English | MEDLINE | ID: mdl-35490031

ABSTRACT

Unscheduled tetraploidy is a metastable state that rapidly evolves into aneuploidy. Recent findings reported by Gemble et al. demonstrate that freshly formed tetraploid cells fail to accumulate the required amounts of DNA replication factors during the first G1 phase after whole-genome duplication (WGD), culminating in genetic instability in the subsequent S phase and extensive karyotypic alterations.


Subject(s)
DNA Replication , Tetraploidy , Aneuploidy , Cell Cycle Proteins/genetics , DNA Replication/genetics , Humans , Mitosis , S Phase
4.
Mol Cell ; 66(3): 306-319, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28475867

ABSTRACT

Both embryonic and adult stem cells are endowed with a superior capacity to prevent the accumulation of genetic lesions, repair them, or avoid their propagation to daughter cells, which would be particularly detrimental to the whole organism. Inducible pluripotent stem cells also display a robust DNA damage response, but the stability of their genome is often conditioned by the mutational history of the cell population of origin, which constitutes an obstacle to clinical applications. Cancer stem cells are particularly tolerant to DNA damage and fail to undergo senescence or regulated cell death upon accumulation of genetic lesions. Such a resistance contributes to the genetic drift of evolving tumors as well as to their limited sensitivity to chemo- and radiotherapy. Here, we discuss the pathophysiological and therapeutic implications of the molecular pathways through which stem cells cope with DNA damage.


Subject(s)
Adult Stem Cells/pathology , DNA Damage , DNA Repair , Embryonic Stem Cells/pathology , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Pluripotent Stem Cells/pathology , Adult Stem Cells/metabolism , Animals , Embryonic Stem Cells/metabolism , Genetic Drift , Genomic Instability , Humans , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/radiotherapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/radiation effects , Pluripotent Stem Cells/metabolism , Radiation Tolerance/genetics
5.
Semin Cancer Biol ; 53: 31-41, 2018 12.
Article in English | MEDLINE | ID: mdl-30081229

ABSTRACT

Cancer stem cells (CSCs) are subpopulations of multipotent stem cells (SCs) responsible for the initiation, long-term clonal maintenance, growth and spreading of most human neoplasms. Reportedly, CSCs share a very robust DNA damage response (DDR) with embryonic and adult SCs, which allows them to survive endogenous and exogenous genotoxins. A range of experimental evidence indicates that CSCs have high but heterogeneous levels of replication stress (RS), arising from, and being boosted by, endogenous causes, such as specific genetic backgrounds (e.g., p53 deficiency) and/or aberrant karyotypes (e.g., supernumerary chromosomes). A multipronged RS response (RSR) is put in place by CSCs to limit and ensure tolerability to RS. The characteristics of such dedicated cascade have two opposite consequences, both relevant for cancer therapy. On the one hand, RSR efficiency often increases the reliance of CSCs on specific DDR components. On the other hand, the functional redundancy of pathways of the RSR can paradoxically promote the acquisition of resistance to RS- and/or DNA damage-inducing agents. Here, we provide an overview of the molecular mechanisms of the RSR in cancer cells and CSCs, focusing on the role of CHK1 and some emerging players, such as PARP1 and components of the homologous recombination repair, whose targeting can represent a long-term effective anti-CSC strategy.


Subject(s)
DNA Replication/genetics , Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Signal Transduction/genetics , Animals , Antineoplastic Agents/therapeutic use , DNA Damage , DNA Repair , DNA Replication/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Signal Transduction/drug effects
6.
Gut ; 67(5): 903-917, 2018 05.
Article in English | MEDLINE | ID: mdl-28389531

ABSTRACT

OBJECTIVE: Cancer stem cells (CSCs) are responsible for tumour formation and spreading, and their targeting is required for tumour eradication. There are limited therapeutic options for advanced colorectal cancer (CRC), particularly for tumours carrying RAS-activating mutations. The aim of this study was to identify novel CSC-targeting strategies. DESIGN: To discover potential therapeutics to be clinically investigated as single agent, we performed a screening with a panel of FDA-approved or investigational drugs on primary CRC cells enriched for CSCs (CRC-SCs) isolated from 27 patients. Candidate predictive biomarkers of efficacy were identified by integrating genomic, reverse-phase protein microarray (RPPA) and cytogenetic analyses, and validated by immunostainings. DNA replication stress (RS) was increased by employing DNA replication-perturbing or polyploidising agents. RESULTS: The drug-library screening led to the identification of LY2606368 as a potent anti-CSC agent acting in vitro and in vivo in tumour cells from a considerable number of patients (∼36%). By inhibiting checkpoint kinase (CHK)1, LY2606368 affected DNA replication in most CRC-SCs, including RAS-mutated ones, forcing them into premature, lethal mitoses. Parallel genomic, RPPA and cytogenetic analyses indicated that CRC-SCs sensitive to LY2606368 displayed signs of ongoing RS response, including the phosphorylation of RPA32 and ataxia telangiectasia mutated serine/threonine kinase (ATM). This was associated with mutation(s) in TP53 and hyperdiploidy, and made these CRC-SCs exquisitely dependent on CHK1 function. Accordingly, experimental increase of RS sensitised resistant CRC-SCs to LY2606368. CONCLUSIONS: LY2606368 selectively eliminates replication-stressed, p53-deficient and hyperdiploid CRC-SCs independently of RAS mutational status. These results provide a strong rationale for biomarker-driven clinical trials with LY2606368 in patients with CRC.


Subject(s)
Antineoplastic Agents/pharmacology , Checkpoint Kinase 1/drug effects , Colorectal Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Pyrazines/pharmacology , Pyrazoles/pharmacology , Cell Line, Tumor , Checkpoint Kinase 1/genetics , Colorectal Neoplasms/genetics , DNA Replication/drug effects , Humans , Immunohistochemistry , Mutation , Neoplastic Stem Cells/metabolism , Oligonucleotide Array Sequence Analysis , Tumor Suppressor Protein p53/genetics
7.
EMBO J ; 29(7): 1272-84, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20186124

ABSTRACT

Tetraploidy can constitute a metastable intermediate between normal diploidy and oncogenic aneuploidy. Here, we show that the absence of p53 is not only permissive for the survival but also for multipolar asymmetric divisions of tetraploid cells, which lead to the generation of aneuploid cells with a near-to-diploid chromosome content. Multipolar mitoses (which reduce the tetraploid genome to a sub-tetraploid state) are more frequent when p53 is downregulated and the product of the Mos oncogene is upregulated. Mos inhibits the coalescence of supernumerary centrosomes that allow for normal bipolar mitoses of tetraploid cells. In the absence of p53, Mos knockdown prevents multipolar mitoses and exerts genome-stabilizing effects. These results elucidate the mechanisms through which asymmetric cell division drives chromosomal instability in tetraploid cells.


Subject(s)
Carcinoma/metabolism , Colonic Neoplasms/metabolism , Genes, mos , Mitosis , Polyploidy , Tumor Suppressor Protein p53/metabolism , Aneuploidy , Animals , Carcinoma/genetics , Cell Line, Tumor , Centrosome/metabolism , Chromosomal Instability , Colonic Neoplasms/genetics , Female , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , Tumor Suppressor Protein p53/genetics
8.
Methods Cell Biol ; 181: 43-58, 2024.
Article in English | MEDLINE | ID: mdl-38302243

ABSTRACT

Senescence is a state of irreversible cell cycle arrest accompanied by the acquisition of the senescence-associated secretory phenotype (SASP), which is activated in response to a variety of damaging stimuli, including genotoxic therapy. Accumulating evidence indicates that mitotic stress also promotes entry into senescence. This occurs via a mechanism involving defective mitoses and mitotic arrest, followed by abortion of cell division and slippage in the G1 phase. In this process, mitotic slippage leads to the generation of senescent cells characterized by a large cell body and a multinucleated and/or enlarged nuclear size. Here, we provide a detailed protocol for the assessment of cell proliferation and mitotic slippage in colorectal cancer cells upon pharmacological inhibition of the mitotic kinesin KIF11, best known as EG5. This approach can be used for preliminary characterization of senescence induction by therapeutics, but requires validation with standard senescence assays.


Subject(s)
Apoptosis , Mitosis , Microscopy, Video , Mitosis/genetics , Cell Proliferation
9.
Cancers (Basel) ; 13(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921638

ABSTRACT

Cancer stem cells (CSCs) drive not only tumor initiation and expansion, but also therapeutic resistance and tumor relapse. Therefore, CSC eradication is required for effective cancer therapy. In preclinical models, CSCs demonstrated high capability to tolerate even extensive genotoxic stress, including replication stress, because they are endowed with a very robust DNA damage response (DDR). This favors the survival of DNA-damaged CSCs instead of their inhibition via apoptosis or senescence. The DDR represents a unique CSC vulnerability, but the abrogation of the DDR through the inhibition of the ATR-CHK1 axis is effective only against some subtypes of CSCs, and resistance often emerges. Here, we analyzed the impact of druggable DDR players in the response of patient-derived colorectal CSCs (CRC-SCs) to CHK1/2 inhibitor prexasertib, identifying RAD51 and MRE11 as sensitizing targets enhancing prexasertib efficacy. We showed that combined inhibition of RAD51 and CHK1 (via B02+prexasertib) or MRE11 and CHK1 (via mirin+prexasertib) kills CSCs by affecting multiple genoprotective processes. In more detail, these two prexasertib-based regimens promote CSC eradication through a sequential mechanism involving the induction of elevated replication stress in a context in which cell cycle checkpoints usually activated during the replication stress response are abrogated. This leads to uncontrolled proliferation and premature entry into mitosis of replication-stressed cells, followed by the induction of mitotic catastrophe. CRC-SCs subjected to RAD51+CHK1 inhibitors or MRE11+CHK1 inhibitors are eventually eliminated, and CRC-SC tumorspheres inhibited or disaggregated, via a caspase-dependent apoptosis. These results support further clinical development of these prexasertib-based regimens in colorectal cancer patients.

10.
Cell Death Differ ; 28(7): 2060-2082, 2021 07.
Article in English | MEDLINE | ID: mdl-33531658

ABSTRACT

Cancer stem cells (CSCs) are tumor subpopulations driving disease development, progression, relapse and therapy resistance, and their targeting ensures tumor eradication. CSCs display heterogeneous replication stress (RS), but the functionality/relevance of the RS response (RSR) centered on the ATR-CHK1 axis is debated. Here, we show that the RSR is efficient in primary CSCs from colorectal cancer (CRC-SCs), and describe unique roles for PARP1 and MRE11/RAD51. First, we demonstrated that PARP1 is upregulated in CRC-SCs resistant to several replication poisons and RSR inhibitors (RSRi). In these cells, PARP1 modulates replication fork speed resulting in low constitutive RS. Second, we showed that MRE11 and RAD51 cooperate in the genoprotection and mitosis execution of PARP1-upregulated CRC-SCs. These roles represent therapeutic vulnerabilities for CSCs. Indeed, PARP1i sensitized CRC-SCs to ATRi/CHK1i, inducing replication catastrophe, and prevented the development of resistance to CHK1i. Also, MRE11i + RAD51i selectively killed PARP1-upregulated CRC-SCs via mitotic catastrophe. These results provide the rationale for biomarker-driven clinical trials in CRC using distinct RSRi combinations.


Subject(s)
Colorectal Neoplasms/drug therapy , MRE11 Homologue Protein/drug effects , Mitosis/drug effects , Neoplastic Stem Cells/drug effects , Poly (ADP-Ribose) Polymerase-1/drug effects , Rad51 Recombinase/drug effects , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/genetics , DNA Replication/drug effects , Humans , MRE11 Homologue Protein/genetics , Neoplastic Stem Cells/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Rad51 Recombinase/genetics
11.
Methods Enzymol ; 632: 39-54, 2020.
Article in English | MEDLINE | ID: mdl-32000907

ABSTRACT

Dendritic cells (DCs) are specialized antigen presenting cells (APCs) able to intake and crosspresent antigens (Ags) on major histocompatibility complex (MHC) class I and II molecules to T cells thus initiating primary and memory immune responses. DC-mediated Ag uptake and crosspresentation represent crucial steps toward cancer recognition and eventually elimination. Cytofluorometry is a standardized procedure to study phagocytosis. By fast and reproducible single cell measurements, flow cytometry allows for simultaneous biochemical and functional analyses of Ag intake. In this chapter, we discuss a two-color flow cytometric analysis of DC-mediated uptake of apoptotic bodies. We also show data on the adjuvanticity of Type-I-interferons (Type-I-IFNs) during Ag retention as we offer a guideline and a range of advice on sample preparation and acquisition.


Subject(s)
Dendritic Cells/immunology , Extracellular Vesicles/immunology , Flow Cytometry/methods , Neoplasms/immunology , Animals , Cell Line, Tumor , Coculture Techniques/methods , Humans , Immunogenic Cell Death , Mice , Phagocytosis
12.
Methods Enzymol ; 631: 391-414, 2020.
Article in English | MEDLINE | ID: mdl-31948559

ABSTRACT

Tumor neantigens (TNAs) and tumor-associated antigens (TAAs) are crucial triggers of anticancer immune responses. Through major histocompatibility complex, such antigens activate T cells, which, by releasing interferon gamma (IFN-γ) and granzyme B (GRZB), act as crucial effectors against tumor onset and progression. However, in response to immune pressure, cancer cells use different strategies to favor the establishment of an immunosuppressive tumor microenvironment (TME). Elucidating the dynamics of tumor-host co-evolution provides novel opportunities for personalized cancer immunotherapies. The in sitro (in vitro+in situ) technology is an experimental approach involving the preparation of heterocellular cell suspensions from fresh tumors and their use in vitro. The in sitro experimental setup offers the possibility to (1) analyze immune-related parameters (e.g., quantification of cytokines released in the TME), (2) reveal the mechanism of action of drugs, and (3) unveil crucial cell-intrinsic and cell-extrinsic processes boosting anticancer immune responses. Nonetheless, the in sitro technology does not fully recapitulate the complexity of the tissue "in situ" nor models the patterns of infiltrating immune cell localization, and hence parallel experimentation should be scheduled. In this chapter we discuss in sitro technology to analyze and quantify IFN-γ and GRZB production by T cells either co-cultured with cancer cells in the presence of exogenous adjuvant stimuli (i.e., an antibody targeting the immune checkpoint programmed cell death protein 1, and recombinant calreticulin) and boosting with TAAs (i.e., the model SIINFEKL ovalbumin antigen). Specifically, we describe IFN-γ and GRZB quantification by flow cytometry, ELISA and ELISpot technologies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Calreticulin/pharmacology , Cytotoxicity Tests, Immunologic/methods , Granzymes/metabolism , Interferon-gamma/metabolism , Neoplasms/therapy , Programmed Cell Death 1 Receptor/metabolism , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Calreticulin/genetics , Enzyme-Linked Immunosorbent Assay/methods , Flow Cytometry/methods , Granzymes/analysis , Immunotherapy , Interferon-gamma/analysis , Mice , Neoplasms/immunology , Recombinant Proteins
13.
J Immunother Cancer ; 8(1)2020 03.
Article in English | MEDLINE | ID: mdl-32209603

ABSTRACT

Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.


Subject(s)
Immunogenic Cell Death/genetics , Molecular Biology/methods , Consensus , Guidelines as Topic , Humans
14.
Pharmacol Ther ; 200: 55-68, 2019 08.
Article in English | MEDLINE | ID: mdl-30998941

ABSTRACT

In most (if not all) solid tumors, malignant cells are outnumbered by their non-malignant counterparts, including immune, endothelial and stromal cells. However, while the mechanisms whereby cancer cells adapt to microenvironmental perturbations have been studied in great detail, relatively little is known on stress responses in non-malignant compartments of the tumor microenvironment. Here, we discuss the mechanisms whereby cancer-associated fibroblasts and other cellular components of the tumor stroma react to stress in the context of an intimate crosstalk with malignant, endothelial and immune cells, and how such crosstalk influences disease progression and response to treatment.


Subject(s)
Neoplasms , Stress, Physiological , Stromal Cells , Animals , Homeostasis , Humans , Tumor Microenvironment
15.
Cell Metab ; 30(1): 36-50, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31269428

ABSTRACT

Tumor-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumor microenvironment (TME) that can account for up to 50% of some solid neoplasms. Most often, TAMs support disease progression and resistance to therapy by providing malignant cells with trophic and nutritional support. However, TAMs can mediate antineoplastic effects, especially in response to pharmacological agents that boost their phagocytic and oxidative functions. Thus, TAMs and their impact on the overall metabolic profile of the TME have a major influence on tumor progression and resistance to therapy, de facto constituting promising targets for the development of novel anticancer agents. Here, we discuss the metabolic circuitries whereby TAMs condition the TME to support tumor growth and how such pathways can be therapeutically targeted.


Subject(s)
Macrophages/metabolism , Tumor Microenvironment/physiology , Animals , Humans , Immunotherapy , Oxidative Phosphorylation , Tumor Microenvironment/genetics
16.
Trends Cell Biol ; 29(5): 396-416, 2019 05.
Article in English | MEDLINE | ID: mdl-30765144

ABSTRACT

Evolving neoplasms accumulate non-synonymous mutations at a high rate, potentially enabling the expression of antigenic epitopes that can be recognized by the immune system. Since they are not covered by central tolerance, such tumor neoantigens (TNAs) should be under robust immune control as they surge. However, genetic defects that impair cancer cell eradication by the immune system coupled with the establishment of local immunosuppression can enable TNA accumulation, which is generally associated with improved clinical sensitivity to various immunotherapies. Here, we explore how tumor-intrinsic factors and immunological processes shape the mutational and antigenic landscape of evolving neoplasms to influence clinical responses to immunotherapy, and propose strategies to achieve robust immunological control of the disease despite disabled immunosurveillance.


Subject(s)
Antigens, Neoplasm/genetics , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy , Animals , Antigens, Neoplasm/immunology , Humans , Mutation , Neoplasms/immunology
17.
Methods Mol Biol ; 1524: 77-95, 2017.
Article in English | MEDLINE | ID: mdl-27815897

ABSTRACT

Cell cycle checkpoints are surveillance mechanisms that sequentially and continuously monitor cell cycle progression thereby contributing to the preservation of genetic stability. Among them, the spindle assembly checkpoint (SAC) prevents the occurrence of abnormal divisions by halting the metaphase to anaphase transition following the detection of erroneous microtubules-kinetochore attachment(s). Most synchronization strategies are based on the activation of cell cycle checkpoints to enrich the population of cells in a specific phase of the cell cycle. Here, we develop a two-step protocol of sequential cell synchronization and desynchronization employing antimitotic SAC-inducing agents (i.e., nocodazole or paclitaxel) in combination with the depletion of the SAC kinase MPS1. We describe cytofluorometric and time-lapse videomicroscopy methods to detect cell cycle progression, including the assessment of cell cycle distribution, quantification of mitotic cell fraction, and analysis of single cell fate profile of living cells. We applied these methods to validate the synchronization-desynchronization protocol and to qualitatively and quantitatively determine the impact of SAC inactivation on the activity of antimitotic agents.


Subject(s)
Cell Cycle/physiology , M Phase Cell Cycle Checkpoints/physiology , Anaphase/genetics , Cell Cycle/genetics , Flow Cytometry , HCT116 Cells , Histones/metabolism , Humans , M Phase Cell Cycle Checkpoints/genetics , Microscopy, Video , Microtubules/genetics , Microtubules/metabolism , Mitosis/genetics , Mitosis/physiology , Phosphorylation , Polyploidy , RNA, Small Interfering/genetics , Software , Tetraploidy
18.
Mol Cell Oncol ; 4(3): e1299274, 2017.
Article in English | MEDLINE | ID: mdl-28616577

ABSTRACT

Mitotic catastrophe is an oncosuppressive mechanism that targets cells experiencing defective mitoses via the activation of specific cell cycle checkpoints, regulated cell death pathways and/or cell senescence. This prevents the accumulation of karyotypic aberrations, which otherwise may drive oncogenesis and tumor progression. Here, we summarize experimental evidence confirming the role of caspase 2 (CASP2) as the main executor of mitotic catastrophe, and we discuss the signals that activate CASP2 in the presence of mitotic aberrations. In addition, we summarize the main p53-dependent and -independent effector pathways through which CASP2 limits chromosomal instability and non-diploidy, hence mediating robust oncosuppressive functions.

19.
Cytokine Growth Factor Rev ; 36: 67-77, 2017 08.
Article in English | MEDLINE | ID: mdl-28595838

ABSTRACT

Tumorigenesis and tumor progression relies on the dialectics between tumor cells, the extracellular matrix and its remodelling enzymes, neighbouring cells and soluble cues. The host immune response is crucial in eliminating or promoting tumor growth and the reciprocal coevolution of tumor and immune cells, during disease progression and in response to therapy, shapes tumor fate by activating innate and adaptive mechanisms. The phenotypic plasticity is a common feature of epithelial and immune cells and epithelial-mesenchymal transition (EMT) is a dynamic process, governed by microenvironmental stimuli, critical in tumor cell shaping, increased tumor cell heterogeneity and stemness. In this review we will outline how the dysregulation of microenvironmental signaling is crucial in determining tumor plasticity and EMT, arguing how therapy resistance hinges on these dynamics.


Subject(s)
Cytokines/physiology , Epithelial-Mesenchymal Transition , Neoplasms/immunology , Neoplasms/physiopathology , Tumor Microenvironment , Animals , Cell Transformation, Neoplastic , Disease Progression , Extracellular Matrix/physiology , Humans , Inflammation , Mice , Neoplasms/genetics , Neoplasms/pathology , Neoplastic Stem Cells/physiology , Signal Transduction , Tumor Microenvironment/immunology
20.
Oncoimmunology ; 6(5): e1314424, 2017.
Article in English | MEDLINE | ID: mdl-28638743

ABSTRACT

If there is a great new hope in the treatment of cancer, the immune system is it. Innate and adaptive immunity either promote or attenuate tumorigenesis and so can have opposing effects on the therapeutic outcome. Originally described as potent antivirals, Type-I interferons (IFNs) were quickly recognized as central coordinators of tumor-immune system interactions. Type-I-IFNs are produced by, and act on, both tumor and immune cells being either host-protecting or tumor-promoting. Here, we discuss Type-I-IFNs in infectious and cancer diseases highlighting their dichotomous role and raising the importance to deeply understand the underlying mechanisms so to reshape the way we can exploit Type-I-IFNs therapeutically.

SELECTION OF CITATIONS
SEARCH DETAIL