Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Elife ; 62017 03 23.
Article in English | MEDLINE | ID: mdl-28332979

ABSTRACT

Regeneration of skeletal muscle in adults is mediated by satellite stem cells. Accumulation of misfolded proteins triggers endoplasmic reticulum stress that leads to unfolded protein response (UPR). The UPR is relayed to the cell through the activation of PERK, IRE1/XBP1, and ATF6. Here, we demonstrate that levels of PERK and IRE1 are increased in satellite cells upon muscle injury. Inhibition of PERK, but not the IRE1 arm of the UPR in satellite cells inhibits myofiber regeneration in adult mice. PERK is essential for the survival and differentiation of activated satellite cells into the myogenic lineage. Deletion of PERK causes hyper-activation of p38 MAPK during myogenesis. Blocking p38 MAPK activity improves the survival and differentiation of PERK-deficient satellite cells in vitro and muscle formation in vivo. Collectively, our results suggest that the PERK arm of the UPR plays a pivotal role in the regulation of satellite cell homeostasis during regenerative myogenesis.


Subject(s)
Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Regeneration , Satellite Cells, Skeletal Muscle/physiology , Unfolded Protein Response , eIF-2 Kinase/metabolism , Animals , Membrane Proteins/metabolism , Mice , Muscle, Skeletal/injuries , Protein Serine-Threonine Kinases/metabolism
2.
Bio Protoc ; 6(19)2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27819014

ABSTRACT

Adult skeletal muscle regeneration is orchestrated by a specialized population of adult stem cells called satellite cells, which are localized between the basal lamina and the plasma membrane of myofibers. The process of satellite cell-activation, proliferation, and subsequent differentiation that occurs during muscle regeneration can be recapitulated ex vivo by isolation of single myofibers from skeletal muscles and culturing them under suspension conditions. Here, we describe an improved protocol to evaluate ex vivo satellite cells activation through isolation of single myofibers from extensor digitorum longus (EDL) muscle of mice and culturing and staining of myofiber-associated satellite cells with the markers of self-renewal, proliferation, and differentiation.

SELECTION OF CITATIONS
SEARCH DETAIL