Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cell ; 172(5): 1050-1062.e14, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29474906

ABSTRACT

While the preponderance of morbidity and mortality in medulloblastoma patients are due to metastatic disease, most research focuses on the primary tumor due to a dearth of metastatic tissue samples and model systems. Medulloblastoma metastases are found almost exclusively on the leptomeningeal surface of the brain and spinal cord; dissemination is therefore thought to occur through shedding of primary tumor cells into the cerebrospinal fluid followed by distal re-implantation on the leptomeninges. We present evidence for medulloblastoma circulating tumor cells (CTCs) in therapy-naive patients and demonstrate in vivo, through flank xenografting and parabiosis, that medulloblastoma CTCs can spread through the blood to the leptomeningeal space to form leptomeningeal metastases. Medulloblastoma leptomeningeal metastases express high levels of the chemokine CCL2, and expression of CCL2 in medulloblastoma in vivo is sufficient to drive leptomeningeal dissemination. Hematogenous dissemination of medulloblastoma offers a new opportunity to diagnose and treat lethal disseminated medulloblastoma.


Subject(s)
Medulloblastoma/blood supply , Medulloblastoma/pathology , Meningeal Neoplasms/blood supply , Meningeal Neoplasms/secondary , Allografts , Animals , Cell Line, Tumor , Chemokine CCL2/metabolism , Chromosomes, Human, Pair 10/genetics , Female , Humans , Male , Medulloblastoma/genetics , Mice, SCID , Neoplastic Cells, Circulating , Parabiosis
3.
Acta Neuropathol ; 147(1): 68, 2024 04 07.
Article in English | MEDLINE | ID: mdl-38583102

ABSTRACT

Mutations in the pivotal metabolic isocitrate dehydrogenase (IDH) enzymes are recognized to drive the molecular footprint of diffuse gliomas, and patients with IDH mutant gliomas have overall favorable outcomes compared to patients with IDH wild-type tumors. However, survival still varies widely among patients with IDH mutated tumors. Here, we aimed to characterize molecular signatures that explain the range of IDH mutant gliomas. By integrating matched epigenome-wide methylome, transcriptome, and global metabolome data in 154 patients with gliomas, we identified a group of IDH mutant gliomas with globally altered metabolism that resembled IDH wild-type tumors. IDH-mutant gliomas with altered metabolism have significantly shorter overall survival from their IDH mutant counterparts that is not fully accounted for by recognized molecular prognostic markers of CDKN2A/B loss and glioma CpG Island Methylator Phenotype (GCIMP) status. IDH-mutant tumors with dysregulated metabolism harbored distinct epigenetic alterations that converged to drive proliferative and stem-like transcriptional profiles, providing a window to target novel dependencies in gliomas.


Subject(s)
Glioma , Isocitrate Dehydrogenase , Humans , Isocitrate Dehydrogenase/genetics , Glioma/genetics , Epigenomics , Mutation/genetics , Transcriptome
4.
BMC Cancer ; 24(1): 744, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890593

ABSTRACT

BACKGROUND: Tumor hypoxia is associated with prostate cancer (PCa) treatment resistance and poor prognosis. Pimonidazole (PIMO) is an investigational hypoxia probe used in clinical trials. A better understanding of the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia is needed for future clinical application. Here, we investigated the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia in patients with localized PCa, in order to apply PIMO as a prognostic tool and to identify potential biomarkers for future clinical translation. METHODS: A total of 39 patients with localized PCa were recruited and administered oral PIMO before undergoing radical prostatectomy (RadP). Immunohistochemical staining for PIMO was performed on 37 prostatectomy specimens with staining patterns evaluated and clinical association analyzed. Whole genome bisulfite sequencing was performed using laser-capture of microdissected specimen sections comparing PIMO positive and negative tumor areas. A hypoxia related methylation molecular signature was generated by integrating the differentially methylated regions with previously established RNA-seq datasets. RESULTS: Three PIMO staining patterns were distinguished: diffuse, focal, and comedo-like. The comedo-like staining pattern was more commonly associated with adverse pathology. PIMO-defined hypoxia intensity was positively correlated with advanced pathologic stage, tumor invasion, and cribriform and intraductal carcinoma morphology. The generated DNA methylation signature was found to be a robust hypoxia biomarker, which could risk-stratify PCa patients across multiple clinical datasets, as well as be applicable in other cancer types. CONCLUSIONS: Oral PIMO unveiled clinicopathologic features of disease aggressiveness in localized PCa. The generated DNA methylation signature is a novel and robust hypoxia biomarker that has the potential for future clinical translation.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Nitroimidazoles , Prostatectomy , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Prostatic Neoplasms/metabolism , Aged , Middle Aged , Tumor Hypoxia/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Administration, Oral
5.
Acta Neuropathol ; 141(1): 101-116, 2021 01.
Article in English | MEDLINE | ID: mdl-33025139

ABSTRACT

Schwannomatosis (SWNTS) is a genetic cancer predisposition syndrome that manifests as multiple and often painful neuronal tumors called schwannomas (SWNs). While germline mutations in SMARCB1 or LZTR1, plus somatic mutations in NF2 and loss of heterozygosity in chromosome 22q have been identified in a subset of patients, little is known about the epigenomic and genomic alterations that drive SWNTS-related SWNs (SWNTS-SWNs) in a majority of the cases. We performed multiplatform genomic analysis and established the molecular signature of SWNTS-SWNs. We show that SWNTS-SWNs harbor distinct genomic features relative to the histologically identical non-syndromic sporadic SWNs (NS-SWNS). We demonstrate the existence of four distinct DNA methylation subgroups of SWNTS-SWNs that are associated with specific transcriptional programs and tumor location. We show several novel recurrent non-22q deletions and structural rearrangements. We detected the SH3PXD2A-HTRA1 gene fusion in SWNTS-SWNs, with predominance in LZTR1-mutant tumors. In addition, we identified specific genetic, epigenetic, and actionable transcriptional programs associated with painful SWNTS-SWNs including PIGF, VEGF, MEK, and MTOR pathways, which may be harnessed for management of this syndrome.


Subject(s)
Epigenesis, Genetic , Genomics , Nerve Sheath Neoplasms/genetics , Neurilemmoma/genetics , Neurofibromatoses/genetics , Skin Neoplasms/genetics , Transcriptome , Adaptor Proteins, Vesicular Transport/genetics , Cohort Studies , DNA Methylation , Gene Fusion , Genetic Predisposition to Disease/genetics , Germ-Line Mutation , High-Temperature Requirement A Serine Peptidase 1/genetics , Humans , Mitogen-Activated Protein Kinases/genetics , Neurofibromin 2/genetics , Transcription Factors/genetics
6.
J Neurooncol ; 151(3): 443-449, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33611710

ABSTRACT

INTRODUCTION: Meningioma is the most common primary brain tumor. Most meningiomas are benign; however, a subset of these tumors can be aggressive, presenting with early or multiple tumor recurrences that are refractory to neurosurgical resection and radiotherapy. There is no standard systemic therapy for these patients, and post-surgical management of these patients is usually complicated due to lack of accurate prediction for tumor progression. METHODS: In this review, we summarise the crucial immunosuppressive role of checkpoint regulators, including PD-1 and PD-L1 interacting in the tumor microenvironment, which has led to efforts aimed at targeting this axis. RESULTS: Since their discovery, checkpoint inhibitors have significantly improved the outcome in many types of cancers. Currently, targeted therapy for PD-1 and PD-L1 proteins are being tested in several ongoing clinical trials for brain tumors such as glioblastoma. More recently, there have been some reports implicating increased PD-L1 expression in high-grade (WHO grades II and III) meningiomas. Several clinical trials are underway to assess the efficacy of checkpoint inhibitors in the therapeutic management of patients with aggressive meningiomas. Here, we review the immune suppressive microenvironment in meningiomas, and then focus on clinical and pathological characterization and tumor heterogeneity with respect to PD-L1 expression as well as challenges associated with the assessment of PD-L1 expression in meningioma. CONCLUSION: We conclude with a brief review of ongoing clinical trials using checkpoint inhibitors for the treatment of high-grade and refractory meningiomas.


Subject(s)
B7-H1 Antigen/genetics , Brain Neoplasms/genetics , Genes, cdc/genetics , Meningioma/genetics , Animals , B7-H1 Antigen/biosynthesis , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Humans , Immunohistochemistry , Meningioma/pathology , Meningioma/therapy
7.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925295

ABSTRACT

Liquid biopsy, as a non-invasive technique for cancer diagnosis, has emerged as a major step forward in conquering tumors. Current practice in diagnosis of central nervous system (CNS) tumors involves invasive acquisition of tumor biopsy upon detection of tumor on neuroimaging. Liquid biopsy enables non-invasive, rapid, precise and, in particular, real-time cancer detection, prognosis and treatment monitoring, especially for CNS tumors. This approach can also uncover the heterogeneity of these tumors and will likely replace tissue biopsy in the future. Key components of liquid biopsy mainly include circulating tumor cells (CTC), circulating tumor nucleic acids (ctDNA, miRNA) and exosomes and samples can be obtained from the cerebrospinal fluid, plasma and serum of patients with CNS malignancies. This review covers current progress in application of liquid biopsies for diagnosis and monitoring of CNS malignancies.


Subject(s)
Central Nervous System Neoplasms/diagnosis , Liquid Biopsy/methods , Liquid Biopsy/trends , Biomarkers, Tumor/blood , Biomarkers, Tumor/cerebrospinal fluid , Central Nervous System Neoplasms/metabolism , Circulating Tumor DNA/blood , Exosomes/pathology , Humans , MicroRNAs , Neoplastic Cells, Circulating/pathology , Prognosis
8.
Acta Neuropathol ; 138(6): 1053-1074, 2019 12.
Article in English | MEDLINE | ID: mdl-31428936

ABSTRACT

Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.


Subject(s)
Brain Neoplasms/metabolism , Epigenesis, Genetic , Glioma/metabolism , Methyltransferases/metabolism , Muscle Proteins/metabolism , Protein Biosynthesis/physiology , Ribosomes/metabolism , Animals , Biomarkers, Tumor , Cell Line, Tumor , DNA Methylation , Humans , Methyltransferases/genetics , Mice, Nude , Muscle Proteins/genetics , Neoplasm Transplantation , RNA, Ribosomal, 28S
9.
Cancer ; 122(16): 2469-78, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27183272

ABSTRACT

5-Aminolevulinic acid (5-ALA) has been approved as an intraoperative adjunct in glioma surgery in Europe, but not North America. A systematic review was conducted to assess the evidence regarding 5-ALA as a surgical adjunct. The MEDLINE, EMBASE, and CENTRAL databases were searched, using terms relevant to "5-ALA" and "high-grade gliomas." Included studies were based on adults aged ≥18 years who underwent surgical resection/biopsy. No language or date limitations were used. Forty-three studies (1830 patients) were identified. Thirty-six were coordinated by European countries, 2 were in the United States, and none were in Canada. One was randomized, 28 were prospective, and 14 were retrospective. Twenty-six studies assessed the utility of 5-ALA as a diagnostic tool, 24 assessed its influence on the extent of resection (EOR), 9 assessed survival, and 22 reported adverse events. 5-ALA had high sensitivity and positive predictive value, whereas its specificity increased with additional adjuncts. The EOR increased with 5-ALA, but only progression-free survival was significantly influenced. Reporting of adverse events was not systematic. The use of 5-ALA improved tumor visualization and thus enabled a greater EOR and perhaps increased survival. However, additional adjuncts may be necessary for maximizing the specificity of resection and patient safety. Additional parameters, such as patient quality of life and health economic analyses, would be informative. Thus, additional systematic collection of prospective evidence may be necessary for the global incorporation of this potentially valuable surgical adjunct into routine practice. Cancer 2016;122:2469-78. © 2016 American Cancer Society.


Subject(s)
Aminolevulinic Acid , Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Glioma/diagnosis , Glioma/surgery , Intraoperative Care , Brain Neoplasms/mortality , Glioma/mortality , Humans , Magnetic Resonance Imaging , Neoplasm Grading , Neoplasm Recurrence, Local , Postoperative Care , Reproducibility of Results , Surgery, Computer-Assisted , Treatment Outcome
10.
RNA ; 20(8): 1238-47, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24951553

ABSTRACT

Processing of HIV-1 transcripts results in three populations in the cytoplasm of infected cells: full-length RNA, singly spliced, and multiply spliced RNAs. Rev, regulator of virion expression, is an essential regulatory protein of HIV-1 required for transporting unspliced and singly spliced viral transcripts from the nucleus to the cytoplasm. Export allows these RNAs to be translated and the full-length RNA to be packaged into virus particles. In our study, we investigate the activity of pokeweed antiviral protein (PAP), a glycosidase isolated from the pokeweed plant Phytolacca americana, on the processing of viral RNAs. We show that coexpression of PAP with a proviral clone alters the splicing ratio of HIV-1 RNAs. Specifically, PAP causes the accumulation of multiply spliced 2-kb RNAs at the expense of full-length 9-kb and singly spliced 4-kb RNAs. The change in splicing ratio is due to a decrease in activity of Rev. We show that PAP depurinates the rev open reading frame and that this damage to the viral RNA inhibits its translation. By decreasing Rev expression, PAP indirectly reduces the availability of full-length 9-kb RNA for packaging and translation of the encoded structural proteins required for synthesis of viral particles. The decline we observe in virus protein expression is not due to cellular toxicity as PAP did not diminish translation rate. Our results describing the reduced activity of a regulatory protein of HIV-1, with resulting change in virus mRNA ratios, provides new insight into the antiviral mechanism of PAP.


Subject(s)
HIV-1/physiology , RNA Splicing , RNA, Viral/genetics , RNA, Viral/metabolism , Ribosome Inactivating Proteins, Type 1/metabolism , Virus Replication , Biological Transport , Cell Line , Gene Expression , Humans , Open Reading Frames , Polyribosomes/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosome Inactivating Proteins, Type 1/genetics , Transcription, Genetic , Viral Proteins/genetics , rev Gene Products, Human Immunodeficiency Virus/genetics , rev Gene Products, Human Immunodeficiency Virus/metabolism
12.
J Virol ; 88(19): 11166-77, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25031339

ABSTRACT

UNLABELLED: The EBNA1 protein of Epstein-Barr virus (EBV) plays multiple roles in EBV latent infection, including altering cellular pathways relevant for cancer. Here we used microRNA (miRNA) cloning coupled with high-throughput sequencing to identify the effects of EBNA1 on cellular miRNAs in two nasopharyngeal carcinoma cell lines. EBNA1 affected a small percentage of cellular miRNAs in both cell lines, in particular, upregulating multiple let-7 family miRNAs, including let-7a. The effects of EBNA1 on let-7a were verified by demonstrating that EBNA1 silencing in multiple EBV-positive carcinomas downregulated let-7a. Accordingly, the let-7a target, Dicer, was found to be partially downregulated by EBNA1 expression (at the mRNA and protein levels) and upregulated by EBNA1 silencing in EBV-positive cells. Reporter assays based on the Dicer 3' untranslated region with and without let-7a target sites indicated that the effects of EBNA1 on Dicer were mediated by let-7a. EBNA1 was also found to induce the expression of let-7a primary RNAs in a manner dependent on the EBNA1 transcriptional activation region, suggesting that EBNA1 induces let-7a by transactivating the expression of its primary transcripts. Consistent with previous reports that Dicer promotes EBV reactivation, we found that a let-7a mimic inhibited EBV reactivation to the lytic cycle, while a let-7 sponge increased reactivation. The results provide a mechanism by which EBNA1 could promote EBV latency by inducing let-7 miRNAs. IMPORTANCE: The EBNA1 protein of Epstein-Barr virus (EBV) contributes in multiple ways to the latent mode of EBV infection that leads to lifelong infection. In this study, we identify a mechanism by which EBNA1 helps to maintain EBV infection in a latent state. This involves induction of a family of microRNAs (let-7 miRNAs) that in turn decreases the level of the cellular protein Dicer. We demonstrate that let-7 miRNAs inhibit the reactivation of latent EBV, providing an explanation for our previous observation that EBNA1 promotes latency. In addition, since decreased levels of Dicer have been associated with metastatic potential, EBNA1 may increase metastases by downregulating Dicer.


Subject(s)
DEAD-box RNA Helicases/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Gene Expression Regulation , Herpesvirus 4, Human/genetics , MicroRNAs/genetics , Ribonuclease III/genetics , Virus Latency , Cell Line, Tumor , DEAD-box RNA Helicases/metabolism , Epstein-Barr Virus Nuclear Antigens/metabolism , Gene Silencing , Genes, Reporter , Herpesvirus 4, Human/metabolism , Host-Pathogen Interactions , Humans , Luciferases/genetics , Luciferases/metabolism , MicroRNAs/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Ribonuclease III/metabolism , Signal Transduction , Transcription, Genetic
13.
Acta Neuropathol ; 129(6): 829-48, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25943888

ABSTRACT

Recent advances in genomic technology have led to a better understanding of key molecular alterations that underlie glioblastoma (GBM). The current WHO-based classification of GBM is mainly based on histologic features of the tumor, which frequently do not reflect the molecular differences that describe the diversity in the biology of these lesions. The current WHO definition of GBM relies on the presence of high-grade astrocytic neoplasm with the presence of either microvascular proliferation and/or tumor necrosis. High-throughput analyses have identified molecular subtypes and have led to progress in more accurate classification of GBM. These findings, in turn, would result in development of more effective patient stratification, targeted therapeutics, and prediction of patient outcome. While consensus has not been reached on the precise nature and means to sub-classify GBM, it is clear that IDH-mutant GBMs are clearly distinct from GBMs without IDH1/2 mutation with respect to molecular and clinical features, including prognosis. In addition, recent findings in pediatric GBMs regarding mutations in the histone H3F3A gene suggest that these tumors may represent a 3rd major category of GBM, separate from adult primary (IDH1/2 wt), and secondary (IDH1/2 mut) GBMs. In this review, we describe major clinically relevant genetic and epigenetic abnormalities in GBM-such as mutations in IDH1/2, EGFR, PDGFRA, and NF1 genes-altered methylation of MGMT gene promoter, and mutations in hTERT promoter. These markers may be incorporated into a more refined classification system and applied in more accurate clinical decision-making process. In addition, we focus on current understanding of the biologic heterogeneity and classification of GBM and highlight some of the molecular signatures and alterations that characterize GBMs as histologically defined. We raise the question whether IDH-wild type high grade astrocytomas without microvascular proliferation or necrosis might best be classified as GBM, even if they lack the histologic hallmarks as required in the current WHO classification. Alternatively, an astrocytic tumor that fits the current histologic definition of GBM, but which shows an IDH mutation may in fact be better classified as a distinct entity, given that IDH-mutant GBM are quite distinct from a biological and clinical perspective.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Humans
14.
J Virol ; 86(1): 382-94, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22013061

ABSTRACT

Epstein-Barr virus (EBV) infection is causatively associated with a variety of human cancers, including nasopharyngeal carcinoma (NPC). The only viral nuclear protein expressed in NPC is EBNA1, which can alter cellular properties in ways that may promote oncogenesis. Here, we used 2-dimensional difference gel electrophoresis (2-D DiGE) to profile changes in the nuclear proteome that occur after stable expression of EBNA1 in the EBV-negative NPC cell line CNE2. We found that EBNA1 consistently altered the levels of a small percentage of the nuclear proteins. The identification of 19 of these proteins by mass spectrometry revealed that EBNA1 upregulated three proteins affecting metastatic potential (stathmin 1, maspin, and Nm23-H1) and several proteins in the oxidative stress response pathway, including the antioxidants superoxide dismutase 1 (SOD1) and peroxiredoxin 1 (Prx1). Western blot analysis verified that EBNA1 expression upregulated and EBNA1 silencing downregulated these proteins. In addition, transcripts for stathmin 1 were induced by EBNA1, whereas EBNA1 only affected Prx1 and SOD1 at the protein level. Further investigation of the EBNA1 effects on the redox pathway showed that long-term EBNA1 expression in NPC resulted in increased reactive oxygen species (ROS) and increased levels of the NADPH oxidases NOX1 and NOX2, known to generate ROS. In addition, EBNA1 depletion in EBV-positive cells decreased NOX2 and ROS. The results show multiple roles for EBNA1 in the oxidative stress response pathway and suggest mechanisms by which EBNA1 may promote NPC metastases.


Subject(s)
Cell Nucleus/metabolism , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/metabolism , Nasopharyngeal Neoplasms/pathology , Oxidative Stress , Proteome/metabolism , Carcinoma , Cell Line, Tumor , Cell Nucleus/chemistry , Cell Nucleus/genetics , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/genetics , Gene Expression Regulation , Herpesvirus 4, Human/genetics , Humans , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/virology , Neoplasm Metastasis , Proteome/chemistry , Proteome/genetics , Two-Dimensional Difference Gel Electrophoresis
15.
Neuro Oncol ; 25(8): 1452-1460, 2023 08 03.
Article in English | MEDLINE | ID: mdl-36455236

ABSTRACT

BACKGROUND: Resolving the differential diagnosis between brain metastases (BM), glioblastomas (GBM), and central nervous system lymphomas (CNSL) is an important dilemma for the clinical management of the main three intra-axial brain tumor types. Currently, treatment decisions require invasive diagnostic surgical biopsies that carry risks and morbidity. This study aimed to utilize methylomes from cerebrospinal fluid (CSF), a biofluid proximal to brain tumors, for reliable non-invasive classification that addresses limitations associated with low target abundance in existing approaches. METHODS: Binomial GLMnet classifiers of tumor type were built, in fifty iterations of 80% discovery sets, using CSF methylomes obtained from 57 BM, GBM, CNSL, and non-neoplastic control patients. Publicly-available tissue methylation profiles (N = 197) on these entities and normal brain parenchyma were used for validation and model optimization. RESULTS: Models reliably distinguished between BM (area under receiver operating characteristic curve [AUROC] = 0.93, 95% confidence interval [CI]: 0.71-1.0), GBM (AUROC = 0.83, 95% CI: 0.63-1.0), and CNSL (AUROC = 0.91, 95% CI: 0.66-1.0) in independent 20% validation sets. For validation, CSF-based methylome signatures reliably distinguished between tumor types within external tissue samples and tumors from non-neoplastic controls in CSF and tissue. CSF methylome signals were observed to align closely with tissue signatures for each entity. An additional set of optimized CSF-based models, built using tumor-specific features present in tissue data, showed enhanced classification accuracy. CONCLUSIONS: CSF methylomes are reliable for liquid biopsy-based classification of the major three malignant brain tumor types. We discuss how liquid biopsies may impact brain cancer management in the future by avoiding surgical risks, classifying unbiopsiable tumors, and guiding surgical planning when resection is indicated.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Glioblastoma , Humans , Epigenome , Brain Neoplasms/pathology , Central Nervous System Neoplasms/diagnosis , Liquid Biopsy , Brain/pathology , Glioblastoma/diagnosis , Glioblastoma/genetics , Biomarkers, Tumor
16.
Nat Commun ; 14(1): 2696, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37164978

ABSTRACT

Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive sarcoma, and a lethal neurofibromatosis type 1-related malignancy, with little progress made on treatment strategies. Here, we apply a multiplatform integrated molecular analysis on 108 tumors spanning the spectrum of peripheral nerve sheath tumors to identify candidate drivers of MPNST that can serve as therapeutic targets. Unsupervised analyses of methylome and transcriptome profiles identify two distinct subgroups of MPNSTs with unique targetable oncogenic programs. We establish two subgroups of MPNSTs: SHH pathway activation in MPNST-G1 and WNT/ß-catenin/CCND1 pathway activation in MPNST-G2. Single nuclei RNA sequencing characterizes the complex cellular architecture and demonstrate that malignant cells from MPNST-G1 and MPNST-G2 have neural crest-like and Schwann cell precursor-like cell characteristics, respectively. Further, in pre-clinical models of MPNST we confirm that inhibiting SHH pathway in MPNST-G1 prevent growth and malignant progression, providing the rational for investigating these treatments in clinical trials.


Subject(s)
Nerve Sheath Neoplasms , Neurofibromatosis 1 , Neurofibrosarcoma , Humans , Neurofibrosarcoma/genetics , Neurofibrosarcoma/metabolism , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/metabolism , Nerve Sheath Neoplasms/pathology , Neurofibromatosis 1/genetics , Schwann Cells/metabolism , Wnt Signaling Pathway/genetics
17.
Neurooncol Adv ; 4(1): vdac161, 2022.
Article in English | MEDLINE | ID: mdl-36382110

ABSTRACT

Background: Diagnosis and prognostication of intra-axial brain tumors hinges on invasive brain sampling, which carries risk of morbidity. Minimally-invasive sampling of proximal fluids, also known as liquid biopsy, can mitigate this risk. Our objective was to identify diagnostic and prognostic cerebrospinal fluid (CSF) proteomic signatures in glioblastoma (GBM), brain metastases (BM), and primary central nervous system lymphoma (CNSL). Methods: CSF samples were retrospectively retrieved from the Penn State Neuroscience Biorepository and profiled using shotgun proteomics. Proteomic signatures were identified using machine learning classifiers and survival analyses. Results: Using 30 µL CSF volumes, we recovered 755 unique proteins across 73 samples. Proteomic-based classifiers identified malignancy with area under the receiver operating characteristic (AUROC) of 0.94 and distinguished between tumor entities with AUROC ≥0.95. More clinically relevant triplex classifiers, comprised of just three proteins, distinguished between tumor entities with AUROC of 0.75-0.89. Novel biomarkers were identified, including GAP43, TFF3 and CACNA2D2, and characterized using single cell RNA sequencing. Survival analyses validated previously implicated prognostic signatures, including blood-brain barrier disruption. Conclusions: Reliable classification of intra-axial malignancies using low CSF volumes is feasible, allowing for longitudinal tumor surveillance.

18.
Neuro Oncol ; 24(3): 442-454, 2022 03 12.
Article in English | MEDLINE | ID: mdl-34614192

ABSTRACT

BACKGROUND: Chordomas are rare malignant bone cancers of the skull-base and spine. Patient survival is variable and not reliably predicted using clinical factors or molecular features. This study identifies prognostic epigenetic chordoma subtypes that are detected noninvasively using plasma methylomes. METHODS: Methylation profiles of 68 chordoma surgical samples were obtained between 1996 and 2018 across three international centers along with matched plasma methylomes where available. RESULTS: Consensus clustering identified two stable tissue clusters with a disease-specific survival difference that was independent of clinical factors in a multivariate Cox analysis (HR = 14.2, 95%CI: 2.1-94.8, P = 0.0063). Immune-related pathways with genes hypomethylated at promoters and increased immune cell abundance were observed in the poor-performing "Immune-infiltrated" subtype. Cell-to-cell interaction plus extracellular matrix pathway hypomethylation and higher tumor purity were observed in the better-performing "Cellular" subtype. The findings were validated in additional DNA methylation and RNA sequencing datasets as well as with immunohistochemical staining. Plasma methylomes distinguished chordomas from other clinical differential diagnoses by applying fifty chordoma-versus-other binomial generalized linear models in random 20% testing sets (mean AUROC = 0.84, 95%CI: 0.52-1.00). Tissue-based and plasma-based methylation signals were highly correlated in both prognostic clusters. Additionally, leave-one-out models accurately classified all tumors into their correct cluster based on plasma methylation data. CONCLUSIONS: Here, we show the first identification of prognostic epigenetic chordoma subtypes and first use of plasma methylome-based biomarkers to noninvasively diagnose and subtype chordomas. These results may transform patient management by allowing treatment aggressiveness to be balanced with patient risk according to prognosis.


Subject(s)
Chordoma , Chordoma/pathology , Cluster Analysis , DNA Methylation , Humans , Multivariate Analysis , Prognosis
19.
Acta Neuropathol Commun ; 9(1): 67, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33853689

ABSTRACT

One of the most prominent features of glioblastoma (GBM) is hyper-vascularization. Bone marrow-derived macrophages are actively recruited to the tumor and referred to as glioma-associated macrophages (GAMs) which are thought to provide a critical role in tumor neo-vascularization. However, the mechanisms by which GAMs regulate endothelial cells (ECs) in the process of tumor vascularization and response to anti-angiogenic therapy (AATx) is not well-understood. Here we show that GBM cells secrete IL-8 and CCL2 which stimulate GAMs to produce TNFα. Subsequently, TNFα induces a distinct gene expression signature of activated ECs including VCAM-1, ICAM-1, CXCL5, and CXCL10. Inhibition of TNFα blocks GAM-induced EC activation both in vitro and in vivo and improve survival in mouse glioma models. Importantly we show that high TNFα expression predicts worse response to Bevacizumab in GBM patients. We further demonstrated in mouse model that treatment with B20.4.1.1, the mouse analog of Bevacizumab, increased macrophage recruitment to the tumor area and correlated with upregulated TNFα expression in GAMs and increased EC activation, which may be responsible for the failure of AATx in GBMs. These results suggest TNFα is a novel therapeutic that may reverse resistance to AATx. Future clinical studies should be aimed at inhibiting TNFα as a concurrent therapy in GBMs.


Subject(s)
Brain Neoplasms/pathology , Drug Resistance, Neoplasm/physiology , Glioma/pathology , Macrophages/metabolism , Neovascularization, Pathologic/metabolism , Tumor Necrosis Factor-alpha/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Brain Neoplasms/metabolism , Endothelial Cells/metabolism , Glioma/metabolism , Humans , Mice , Neovascularization, Pathologic/pathology , Xenograft Model Antitumor Assays
20.
J Biol Chem ; 284(45): 31453-62, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19748897

ABSTRACT

Human T-cell leukemia virus I (HTLV-I) is a deltaretrovirus that is the causative agent of adult T-cell leukemia and the neurological disorder HTLV-I-associated myelopathy/tropical spastic paraparesis. Currently, no effective antiretroviral treatment options are available to restrict the development of diseases associated with the virus. In this work, we investigated the activity of pokeweed antiviral protein (PAP) on HTLV-I, when expressed from a proviral clone in 293T cells or in an HTLV-I immortalized cell line. PAP is a plant-derived N-glycosidase that exhibits antiviral activity against a number of viruses; however, its mode of action has not been clearly defined. Here, we describe the mechanism by which PAP inhibited production of HTLV-I. We show that PAP depurinated nucleotides within the gag open reading frame and suppressed the synthesis of viral proteins in part by decreasing the translational efficiency of HTLV-I gag/pol mRNA. Observed reduction in levels of viral mRNAs were not due to enhanced degradation; rather, decreased amounts of viral transactivator protein, Tax, led to feed-back inhibition of transcription from the viral promoter. Therefore, PAP efficiently suppressed HTLV-I gene expression at both translational and transcriptional levels, resulting in substantially diminished virus production. Significantly, no changes in viability or rates of cellular transcription or translation were observed in cells expressing PAP, indicating that this protein was not toxic. Antiviral activity, together with the absence of cytotoxicity, supports further investigation of this enzyme as a novel therapeutic agent against the progression of HTLV-I infection.


Subject(s)
Antiviral Agents/pharmacology , Gene Expression Regulation, Viral/drug effects , HTLV-I Infections/virology , Human T-lymphotropic virus 1/drug effects , Phytolacca americana/chemistry , Plant Proteins/pharmacology , Ribosome Inactivating Proteins, Type 1/pharmacology , Cell Line , Cell Survival/drug effects , Down-Regulation , HTLV-I Infections/drug therapy , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL