Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38444193

ABSTRACT

AIM: This study aimed to compare and characterize the resistance profile and the presence of extended-spectrum beta-lactamase (ESBL) related genes in Escherichia coli isolated from healthy finishing pigs fed with or without antibiotics in their diets. METHODS AND RESULTS: A total of 27 ceftiofur-resistant E. coli isolates were obtained from 96 healthy pigs. The antibiotic resistance profile was tested, and all 27 isolates were classified as multidrug-resistant (MDR). A high proportion of isolates were resistant to cephalosporins, ampicillin, ciprofloxacin, and tetracyclines. The ESBL production was observed in 85% of isolates by double-disc synergy test. The MDR-E. coli isolates harbored ESBL genes, such as blaTEM, blaCTX-M-1, blaCTX-M-2, and blaCTX-M-8,25. In addition, other antibiotics resistance genes (ARGs) were also detected, such as sul2, ant(3″)-I, tetA, and mcr-1. The mobilization of the blaCTX-M gene was confirmed for nine E. coli isolates by conjugation assays. The presence of blaCTX-M on mobile genetic elements in these isolates was demonstrated by Southern blot hybridization, and the resistance to cephalosporins was confirmed in the transconjugants. Our results indicate the prevalence of CTX-M-producing E. coli strains harboring mobile genetic elements in the normal microbiota of healthy pigs. CONCLUSIONS: These findings highlight the significance of ESBL genes as a global health concern in livestock and the potential spread of antimicrobial resistance to other members of the gastrointestinal tract microbiota.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Swine , Livestock , Prevalence , beta-Lactamases/genetics , beta-Lactamases/metabolism , Cephalosporins/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Drug Resistance, Multiple, Bacterial/genetics , Plasmids
2.
Curr Microbiol ; 81(1): 40, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38103072

ABSTRACT

Nosocomial infections caused by multidrug-resistant enterobacteria have become a major challenge in global public health. Previous studies have indicated that use of antibiotics in livestock production chains is linked to the rising threat of antibiotic resistance in humans. In this study, we aimed to evaluate the distribution of genes encoding resistance to tetracycline, ß-lactams, and colistin in multidrug-resistant enterobacteria isolated from feces of weaned pigs. Ninety-four enterobacteria isolates were submitted to antibiotic susceptibility test by minimum inhibitory concentration (MIC). In addition, we performed conjugation experiments to verify if plasmid-bearing isolates containing the mcr-1 gene could transfer their resistance determinant to a colistin-sensitive recipient strain. Our results demonstrated a positive association between the detection of antibiotic resistance genes in enterobacteria and the phenotypic resistance profiles of the bacterial isolates. At least one of the extended-spectrum ß-lactamases (ESBL) genes (blaCTX-M, blaTEM, or bla SHV) and tetA was found among most bacterial genera analyzed. In addition, results revealed that the mcr-1 gene can be transferred from E. coli UFV-627 isolate to an F- recipient (Escherichia coli K12) by conjugation. Our findings support the hypothesis that swine represents an important reservoir of antibiotic resistance genes and suggest that horizontal transfer mechanisms (e.g., conjugation) may mediate the spread of these genes in the swine gastrointestinal tract.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Humans , Animals , Swine , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli Infections/microbiology , Enterobacteriaceae/genetics , Drug Resistance, Bacterial , beta-Lactamases/genetics , Plasmids/genetics , Feces/microbiology
3.
Curr Microbiol ; 79(11): 349, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209304

ABSTRACT

In-feed antibiotics are administered to piglets to improve performance and production efficiency. However, the use of growth promoters in the swine industry can select for multidrug-resistant (MDR) bacteria. Here, we evaluate the resistance profile of enterobacteria isolated from fecal samples of weaned pigs (21-35 days) fed or not with antibiotics (colistin and tylosin) and investigated the piglets gut microbiota in both groups. Six hundred and eighteen bacterial cultures were isolated from the control group (CON; n = 384) and antibiotic-fed pigs (ATB; n = 234). All isolates were tested for resistance to 12 antibiotics belonging to six distinct antibiotic classes. Isolates were highly resistant to ampicillin (90%; n = 553), amoxicillin (85%; n = 525), and tetracycline (81%; n = 498). A significant increase (P < 0.05) in resistance to cephalexin, kanamycin, doxycycline, and colistin was observed for bacteria from the ATB group. Piglets allocated in the ATB and CON groups shared similar intestinal microbiota, as revealed by alpha- and beta-diversity analyses. Our findings demonstrate that colistin and tylosin contribute to select MDR enterobacteria in weaned piglets. The high frequency of antibiotic resistance among isolates from the CON group suggests that environmental sources (e.g., fecal contents, aerosols, soil, water, food) also represent a potential reservoir of multidrug-resistant enterobacteria in pig production systems.


Subject(s)
Colistin , Tylosin , Amoxicillin , Animals , Anti-Bacterial Agents/pharmacology , Cephalexin , Colistin/pharmacology , Doxycycline , Enterobacteriaceae/genetics , Kanamycin , Soil , Swine , Tylosin/pharmacology
4.
J Sci Food Agric ; 102(10): 3994-4002, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-34997599

ABSTRACT

BACKGROUND: Alicyclobacillus acidoterrestris is an important thermoacidophilic spore-forming bacterium in fruit-juice deterioration, and alternative non-thermal methods have been investigated to control fruit juice spoilage. This work aimed to evaluate the capacity of bovicin HC5 and nisin to inhibit the growth of vegetative cells and reduce the thermal resistance of endospores of A. acidoterrestris inoculated (107 CFU mL-1 ) in different fruit juices. The number of viable cells was determined after 12 h incubation at 43 °C in the presence and absence of nisin or bovicin HC5 (10-100 AU mL-1 ). The exposure time (min) required to kill 90% of the initial population (reduction of one log factor) at 90 ºC (D90ºC ) was used to assess the thermal resistance of A. acidoterrestris endospores exposed (80 AU mL-1 ) or non-exposed to the bacteriocins. Additionally, the effect of bovicin and nisin on the morphology and cell structure of A. acidoterrestris was evaluated by atomic force microscopy (AFM). RESULTS: Bovicin HC5 and nisin were bactericidal against A. acidoterrestris inoculated in fruit juices and reduced the D90°C values up to 30-fold. AFM topographical images revealed substantial structural changes in the cellular framework of vegetative cells upon treatment with bovicin HC5 or nisin. CONCLUSIONS: These results emphasize the potential application of lantibiotics as additional hurdles in food processing to control thermoacidophilic spoilage bacteria in fruit juices. © 2022 Society of Chemical Industry.


Subject(s)
Alicyclobacillus , Bacteriocins/pharmacology , Nisin , Cell Survival , Fruit and Vegetable Juices , Nisin/pharmacology , Spores, Bacterial
5.
Microbiology (Reading) ; 165(7): 761-771, 2019 07.
Article in English | MEDLINE | ID: mdl-31088602

ABSTRACT

Biofilms may enhance the tolerance of bacterial pathogens to disinfectants, biocides and other stressors by restricting the penetration of antimicrobials into the matrix-enclosed cell aggregates, which contributes to the recalcitrance of biofilm-associated infections. In this work, we performed real-time monitoring of the penetration of nisin into the interior of Staphylococcus aureus biofilms under continuous flow and compared the efficacy of this lantibiotic against planktonic and sessile cells of S. aureus. Biofilms were grown in Center for Disease Control (CDC) reactors and the spatial and temporal effects of nisin action on S. aureus cells were monitored by real-time confocal microscopy. Under continuous flow, nisin caused loss of membrane integrity of sessile cells and reached the bottom of the biofilms within ~20 min of exposure. Viability analysis using propidium iodide staining indicated that nisin was bactericidal against S. aureus biofilm cells. Time-kill assays showed that S. aureus viability reduced 6.71 and 1.64 log c.f.u. ml-1 for homogenized planktonic cells in exponential and stationary phase, respectively. For the homogenized and intact S. aureus CDC biofilms, mean viability decreased 1.25 and 0.50 log c.f.u. ml-1, respectively. Our results demonstrate the kinetics of biofilm killing by nisin under continuous-flow conditions, and shows that alterations in the physiology of S. aureus cells contribute to variations in sensitivity to the lantibiotic. The approach developed here could be useful to evaluate the antibiofilm efficacy of other bacteriocins either independently or in combination with other antimicrobials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Microbial Sensitivity Tests/methods , Nisin/pharmacology , Staphylococcus aureus/drug effects , Humans , Microbial Viability/drug effects , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development , Staphylococcus aureus/physiology
6.
J Sci Food Agric ; 99(1): 210-218, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-29851082

ABSTRACT

BACKGROUND: Heifers emit more enteric methane (CH4 ) than adult cows and these emissions tend to decrease per unit feed intake as they age. However, common mitigation strategies like expensive high-quality feeds are not economically feasible for these pre-production animals. Given its direct role in CH4 production, altering the rumen microbiota is another potential avenue for reducing CH4 production by ruminants. However, to identify effective microbial targets, a better understanding of the rumen microbiota and its relationship to CH4 production across heifer development is needed. RESULTS: Here, we investigate the relationship between rumen bacterial, archaeal, and fungal communities as well as CH4 emissions and a number of production traits in prepubertal (PP), pubertal (PB), and pregnant heifers (PG). Overall, PG heifers emitted the most CH4 , followed by PB and PP heifers. The bacterial genus Acetobacter and the archaeal genus Methanobrevibacter were positively associated, while Eubacterium and Methanosphaera were negatively associated with raw CH4 production by heifers. When corrected for dietary intake, both Eubacterium and Methanosphaera remained negatively associated with CH4 production. CONCLUSION: We suggest that Eubacterium and Methanosphaera represent likely targets for CH4 mitigation efforts in heifers as they were negatively associated with CH4 production and not significantly associated with production traits. © 2018 Society of Chemical Industry.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Cattle/microbiology , Fungi/isolation & purification , Gastrointestinal Microbiome , Methane/metabolism , Rumen/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , Cattle/metabolism , Female , Fungi/classification , Fungi/genetics , Fungi/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Male , Rumen/metabolism
7.
Indian J Microbiol ; 59(3): 304-312, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31388207

ABSTRACT

Bacteriocins have been suggested as an alternative to conventional antibiotics for the prevention and treatment of mastitis infections. Predominant bacteria associated with bovine mastitis (n = 276 isolates) were evaluated for their susceptibility to bovicin HC5, a ruminal bacteriocin produced by Streptococcus equinus HC5. Bovicin HC5 inhibited most (> 80%) of the streptococcal and staphylococcal strains tested, but showed no effect against Escherichia coli strains. Susceptibility and resistance testing indicated that approximately 95% of the S. aureus strains were inhibited by concentrations of bovicin HC5 varying from 40 to 2560 AU ml-1. Bovicin HC5 (62.50 AU ml-1) also inhibited the growth of aerobic and anaerobic mixed cultures of S. aureus and S. agalactiae, but the combination with 0.25 mmol l-1 of EDTA showed even greater bactericidal activity. These results demonstrate that bovicin HC5 is effective against the most prevalent pathogens found in contagious udder infections and could complement the use antibiotics in mastitis prophylaxis and therapy.

8.
World J Microbiol Biotechnol ; 33(10): 185, 2017 Sep 25.
Article in English | MEDLINE | ID: mdl-28948478

ABSTRACT

Diseases caused by phytopathogenic microorganisms account for enormous losses for agribusiness. Although Bacillus species are recognized as being antimicrobial producers and some may provide benefits to plants, the association between Bacillus toyonensis and plants has not been studied. In this study, the whole-genome sequenced endophytic B. toyonensis BAC3151, which has demonstrated antimicrobial activity and quorum sensing inhibition of phytopathogenic bacteria, was investigated for its potential for the production of compounds for biocontrol of plant pathogens. Four whole-genome sequenced B. toyonensis strains shared 3811 protein-coding DNA sequences (CDSs), while strain-specific CDSs, such as biosynthetic gene clusters of antimicrobials, were associated with specific chromosomal regions and mobile genetic elements of the strains. B. toyonensis strains had a higher frequency of putative bacteriocins gene clusters than that of Bacillus species traditionally used for the production of antimicrobials. In addition, gene clusters potentially involved in the production of novel bacteriocins were found in BAC3151, as well as biosynthetic genes of several other compounds, including non-ribosomal peptides, N-acyl homoserine lactonase and chitinases, revealing a genetic repertoire for antimicrobial synthesis greater than that of other Bacillus strains that have demonstrated effective activity against phytopathogens. This study showed for the first time that B. toyonensis has potential to produce various antimicrobials, and the analyses performed indicated that the endophytic strain BAC3151 can be useful for the development of new strategies to control microbial diseases in plants that are responsible for large damages in agricultural crops.


Subject(s)
Bacillus/genetics , Genome, Bacterial , Sequence Analysis, DNA/methods , Bacteriocins/genetics , Chromosome Mapping , Genome Size , Multigene Family , Phylogeny
9.
Appl Environ Microbiol ; 81(20): 7290-304, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26253660

ABSTRACT

Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides.


Subject(s)
Bacteriocins/genetics , Genome, Microbial/genetics , Multigene Family/genetics , Streptococcus/genetics
10.
Appl Environ Microbiol ; 80(19): 6136-45, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25063668

ABSTRACT

Escherichia coli is a highly adaptive microorganism, and its ability to form biofilms under certain conditions can be critical for antimicrobial resistance. The adhesion of four E. coli isolates from bovine mastitis to bovine mammary alveolar (MAC-T) cells, biofilm production on a polystyrene surface, and the expression profiles of the genes fliC, csgA, fimA, and luxS in the presence of enrofloxacin, gentamicin, co-trimoxazole, and ampicillin at half of the MIC were investigated. Increased adhesion of E. coli isolates in the presence of antimicrobials was not observed; however, increased internalization of some isolates was observed by confocal microscopy. All of the antimicrobials induced the formation of biofilms by at least one isolate, whereas enrofloxacin and co-trimoxazole decreased biofilm formation by at least one isolate. Quantitative PCR analysis revealed that all four genes were differentially expressed when bacteria were exposed to subinhibitory concentrations of antimicrobials, with expression altered on the order of 1.5- to 22-fold. However, it was not possible to associate gene expression with induction or reduction of biofilm formation in the presence of the antimicrobials. Taken together, the results demonstrate that antimicrobials could induce biofilm formation by some isolates, in addition to inducing MAC-T cell invasion, a situation that might occur in vivo, potentially resulting in a bacterial reservoir in the udder, which might explain some cases of persistent mastitis in herds.


Subject(s)
Anti-Infective Agents/pharmacology , Bacterial Adhesion/drug effects , Biofilms/growth & development , Escherichia coli/drug effects , Mastitis, Bovine/microbiology , Milk/microbiology , Ampicillin/pharmacology , Animals , Bacterial Proteins/genetics , Biofilms/drug effects , Carbon-Sulfur Lyases/genetics , Cattle , Enrofloxacin , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/physiology , Escherichia coli Proteins/genetics , Female , Fimbriae Proteins/genetics , Flagellin/genetics , Fluoroquinolones/pharmacology , Gentamicins/pharmacology , Mammary Glands, Animal/microbiology , Mastitis, Bovine/drug therapy , Polystyrenes , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology
11.
An Acad Bras Cienc ; 86(1): 465-73, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24519006

ABSTRACT

The objective of the present study was to assess the chemical and bromatological composition and in situ degradability of elephant grass silages inoculated with Streptococcus bovis isolated from cattle rumen. A complete randomized design was used with four treatments and six replications: elephant grass silage, elephant grass silage inoculated with 10(6) CFU/g Streptococcus bovis JB1 strains; elephant grass silage inoculated with 106 CFU/g Streptococcus bovis HC5 strains; elephant grass silage inoculated with 106 CFU/g Enterococcus faecium with six replications each. The pH and ammoniacal nitrogen values were lower (P<0.05) for the silages inoculated with Streptococcus bovis JB1 and HC5, respectively. The silage inoculated with Streptococcus bovis had a higher crude protein content (P<0.05) and there were no differences for the fiber contents in the silage. The (a)soluble fraction degradability, especially in the silages inoculated with Streptococcus bovis JB1 and HC5, had higher values, 30.77 and 29.97%, for dry matter and 31.01 and 36.66% for crude protein, respectively. Inoculation with Streptococcus bovis improved the fermentation profile, protein value and rumen degradability of the nutrients.


Subject(s)
Nutritive Value , Poaceae/chemistry , Rumen/microbiology , Silage/analysis , Streptococcus bovis/metabolism , Animals , Cattle , Fermentation , Poaceae/metabolism , Poaceae/microbiology , Silage/microbiology
12.
Microbiol Res ; 271: 127345, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36889204

ABSTRACT

Bovine mastitis represents a major economic burden faced by the dairy industry. S. aureus is an important and prevalent bovine mastitis-associated pathogen in dairy farms worldwide. The pathogenicity and persistence of S. aureus in the bovine mammary gland are associated with the expression of a range of virulence factors involved in biofilm formation and the production of several toxins. The traditional therapeutic approach to treating bovine mastitis includes the use of antibiotics, but the emergence of antibiotic-resistant strains has caused therapeutic failure. New therapeutic approaches targeting virulence factors of S. aureus rather than cell viability can have several advantages including lower selective pressure towards the development of resistance and little impact on the host commensal microbiota. This review summarizes the potential of anti-virulence therapies to control S. aureus associated with bovine mastitis focusing on anti-toxin, anti-biofilm, and anti-quorum sensing compounds. It also points to potential sources of new anti-virulence inhibitors and presents screening strategies for identifying these compounds.


Subject(s)
Mastitis, Bovine , Staphylococcal Infections , Humans , Female , Animals , Cattle , Staphylococcus aureus , Virulence , Mastitis, Bovine/drug therapy , Staphylococcal Infections/drug therapy , Staphylococcal Infections/veterinary , Virulence Factors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
13.
NPJ Biofilms Microbiomes ; 8(1): 70, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36038584

ABSTRACT

Microbiomes are rife for biotechnological exploitation, particularly the rumen microbiome, due to their complexicity and diversity. In this study, antimicrobial peptides (AMPs) from the rumen microbiome (Lynronne 1, 2, 3 and P15s) were assessed for their therapeutic potential against seven clinical strains of Pseudomonas aeruginosa. All AMPs exhibited antimicrobial activity against all strains, with minimum inhibitory concentrations (MICs) ranging from 4-512 µg/mL. Time-kill kinetics of all AMPs at 3× MIC values against strains PAO1 and LES431 showed complete kill within 10 min to 4 h, although P15s was not bactericidal against PAO1. All AMPs significantly inhibited biofilm formation by strains PAO1 and LES431, and induction of resistance assays showed no decrease in activity against these strains. AMP cytotoxicity against human lung cells was also minimal. In terms of mechanism of action, the AMPs showed affinity towards PAO1 and LES431 bacterial membrane lipids, efficiently permeabilising the P. aeruginosa membrane. Transcriptome and metabolome analysis revealed increased catalytic activity at the cell membrane and promotion of ß-oxidation of fatty acids. Finally, tests performed with the Galleria mellonella infection model showed that Lynronne 1 and 2 were efficacious in vivo, with a 100% survival rate following treatment at 32 mg/kg and 128 mg/kg, respectively. This study illustrates the therapeutic potential of microbiome-derived AMPs against P. aeruginosa infections.


Subject(s)
Microbiota , Pseudomonas Infections , Animals , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides , Humans , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa
14.
NPJ Biofilms Microbiomes ; 8(1): 58, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35835775

ABSTRACT

Here we report two antimicrobial peptides (AMPs), HG2 and HG4 identified from a rumen microbiome metagenomic dataset, with activity against multidrug-resistant (MDR) bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) strains, a major hospital and community-acquired pathogen. We employed the classifier model design to analyse, visualise, and interpret AMP activities. This approach allowed in silico discrimination of promising lead AMP candidates for experimental evaluation. The lead AMPs, HG2 and HG4, are fast-acting and show anti-biofilm and anti-inflammatory activities in vitro and demonstrated little toxicity to human primary cell lines. The peptides were effective in vivo within a Galleria mellonella model of MRSA USA300 infection. In terms of mechanism of action, HG2 and HG4 appear to interact with the cytoplasmic membrane of target cells and may inhibit other cellular processes, whilst preferentially binding to bacterial lipids over human cell lipids. Therefore, these AMPs may offer additional therapeutic templates for MDR bacterial infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antimicrobial Cationic Peptides/pharmacology , Lipids/pharmacology , Lipids/therapeutic use , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism
15.
Braz J Microbiol ; 41(1): 91-6, 2010 Jan.
Article in English | MEDLINE | ID: mdl-24031468

ABSTRACT

The proteolytic activity of Pseudomonas fluorescens 07A was investigated, and was optimal on tryptone-calcium medium. N-acyl-homoserine lactones (AHLs) were not detected on supernatants of late-exponential and stationary-phase culture broths. Synthetic AHLs or bacterial cell extracts added to the medium did not influence growth or proteolytic activity suggesting that quorum sensing might not regulate protease production in this strain.

16.
FEMS Microbiol Ecol ; 96(2)2020 02 01.
Article in English | MEDLINE | ID: mdl-31825517

ABSTRACT

Genomic and transcriptomic analyses were performed to investigate nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) in 310 genomes of ruminal/fecal microorganisms. A total of 119 biosynthetic genes potentially encoding distinct nonribosomal peptides (NRPs) and polyketides (PKs) were predicted in the ruminal microbial genomes and functional annotation separated these genes into 19 functional categories. The phylogenetic reconstruction of the 16S rRNA sequences coupled to the distribution of the three 'backbone' genes involved in NRPS and PKS biosyntheses suggested that these genes were not acquired through horizontal gene transfer. Metatranscriptomic analyses revealed that the predominant genes involved in the synthesis of NRPs and PKs were more abundant in sheep rumen datasets. Reads mapping to the NRPS and PKS biosynthetic genes were represented in the active ruminal microbial community, with transcripts being highly expressed in the bacterial community attached to perennial ryegrass, and following the main changes occurring between primary and secondary colonization of the forage incubated with ruminal fluid. This study is the first comprehensive characterization demonstrating the rich genetic capacity for NRPS and PKS biosyntheses within rumen bacterial genomes, which highlights the potential functional roles of secondary metabolites in the rumen ecosystem.


Subject(s)
Bacteria/metabolism , Peptide Biosynthesis, Nucleic Acid-Independent , Polyketides/metabolism , Rumen/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Feces/microbiology , Gastrointestinal Microbiome , Gene Expression Profiling , Genomics , Peptide Synthases/genetics , Phylogeny , Polyketide Synthases/genetics , RNA, Ribosomal, 16S/genetics , Ruminants
17.
Front Microbiol ; 11: 576738, 2020.
Article in English | MEDLINE | ID: mdl-33072042

ABSTRACT

Studies of rumen microbial ecology suggest that the capacity to produce antimicrobial peptides could be a useful trait in species competing for ecological niches in the ruminal ecosystem. However, little is known about the synthesis of lasso peptides by ruminal microorganisms. Here we analyzed the distribution and diversity of lasso peptide gene clusters in 425 bacterial genomes from the rumen ecosystem. Genome mining was performed using antiSMASH 5, BAGEL4, and a database of well-known precursor sequences. The genomic context of the biosynthetic clusters was investigated to identify putative lasA genes and protein sequences from enzymes of the biosynthetic machinery were evaluated to identify conserved motifs. Metatranscriptome analysis evaluated the expression of the biosynthetic genes in the rumen microbiome. Several incomplete (n = 23) and complete (n = 11) putative lasso peptide clusters were detected in the genomes of ruminal bacteria. The complete gene clusters were exclusively found within the phylum Firmicutes, mainly (48%) in strains of the genus Butyrivibrio. The analysis of the genetic organization of complete putative lasso peptide clusters revealed the presence of co-occurring genes, including kinases (85%), transcriptional regulators (49%), and glycosyltransferases (36%). Moreover, a conserved pattern of cluster organization was detected between strains of the same genus/species. The maturation enzymes LasB, LasC, and LasD showed regions highly conserved, including the presence of a transglutaminase core in LasB, an asparagine synthetase domain in LasC, and an ABC-type transporter system in LasD. Phylogenetic trees of the essential biosynthetic proteins revealed that sequences split into monophyletic groups according to their shared single common ancestor. Metatranscriptome analyses indicated the expression of the lasso peptides biosynthetic genes within the active rumen microbiota. Overall, our in silico screening allowed the discovery of novel biosynthetic gene clusters in the genomes of ruminal bacteria and revealed several strains with the genetic potential to synthesize lasso peptides, suggesting that the ruminal microbiota represents a potential source of these promising peptides.

19.
Antimicrob Agents Chemother ; 52(6): 2247-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18347110

ABSTRACT

Bovicin HC5, a broad-spectrum lantibiotic produced by Streptococcus bovis HC5, catalyzed the efflux of intracellular potassium from Streptococcus bovis JB1, a sensitive strain. The level of ATP also decreased, but this decline appeared to be caused by the activity of the F(1)F(0) ATPase rather than efflux per se.


Subject(s)
Adenosine Triphosphate/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Potassium/metabolism , Streptococcus bovis/drug effects , Streptococcus bovis/metabolism , Bacteriocins/biosynthesis , Bacteriocins/metabolism , Culture Media , Glucose/metabolism , Proton-Translocating ATPases/metabolism , Streptococcus bovis/classification , Streptococcus bovis/growth & development
20.
Anim Sci J ; 89(1): 72-78, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28905506

ABSTRACT

The nutritive value and fermentation quality of palisadegrass (Brachiaria brizantha cv. Xaraes) and stylo (Stylosanthes capitata × S. macrocephala cv. Campo Grande) mixed silages were evaluated. The experiment was analyzed in a factorial scheme (5 × 2) in a completely randomized design using increasing levels of stylo (0, 25, 50, 75 and 100% on a fresh matter basis) on palisadegrass silages, with and without microbial inoculants (MI). With the increased ratio of stylo in mixed silages, dry matter (DM), crude protein (CP), acid detergent fiber (ADF), and lignin content increased in silages. The presence of MI promoted lower DM content, and higher neutral detergent fiber corrected for ash and protein, ADF and lignin content. The acid detergent insoluble nitrogen content and the lactic acid bacteria populations were not affected by treatments. The in vitroDM digestibility was affected by the interaction of levels of the stylo and MI. The pH, NH3 -N/total nitrogen and butyric acid concentrations decreased with increasing levels of stylo. Better nutritive value and quality of fermentation was found in the silage containing higher proportions of this stylo mixed with palisadegrass. The microbial inoculant evaluated did not alter the nutritive value or quality of the fermentation of the silages in this experiment.


Subject(s)
Brachiaria , Fabaceae , Fermentation , Food Quality , Nutritive Value , Silage , Butyric Acid/analysis , Dietary Fiber/analysis , Dietary Proteins/analysis , Hydrogen-Ion Concentration , Lactobacillales , Lignin/analysis , Nitrogen/analysis , Silage/analysis , Silage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL