Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Memory ; 26(5): 683-690, 2018 05.
Article in English | MEDLINE | ID: mdl-29096586

ABSTRACT

Prior research by Hartwig and Dunlosky [(2012). Study strategies of college students: Are self-testing and scheduling related to achievement? Psychonomic Bulletin & Review, 19(1), 126-134] has demonstrated that beliefs about learning and study strategies endorsed by students are related to academic achievement: higher performing students tend to choose more effective study strategies and are more aware of the benefits of self-testing. We examined whether students' achievement goals, independent of academic achievement, predicted beliefs about learning and endorsement of study strategies. We administered Hartwig and Dunlosky's survey, along with the Achievement Goals Questionnaire [Elliot, A. J., & McGregor, H. A. (2001). A 2 × 2 achievement goal framework. Journal of Personality & Social Psychology, 80, 501-519] to a large undergraduate biology course. Similar to results by Hartwig and Dunlosky, we found that high-performing students (relative to low-performing students) were more likely to endorse self-testing, less likely to cram, and more likely to plan a study schedule ahead of time. Independent of achievement, however, achievement goals were stronger predictors of certain study behaviours. In particular, avoidance goals (e.g., fear of failure) coincided with increased use of cramming and the tendency to be driven by impending deadlines. Results suggest that individual differences in student achievement, as well as the underlying reasons for achievement, are important predictors of students' approaches to studying.


Subject(s)
Academic Success , Goals , Learning , Metacognition , Students/psychology , Adolescent , Adult , Culture , Female , Humans , Male , Middle Aged , Motivation , Young Adult
2.
Biol Lett ; 11(1): 20140911, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25589486

ABSTRACT

Small-bodied, insectivorous Nyctitheriidae are known in the Palaeogene fossil record almost exclusively from teeth and fragmentary jaws and have been referred to Eulipotyphla (shrews, moles and hedgehogs) based on dental similarities. By contrast, isolated postcrania attributed to the group suggest arboreality and a relationship to Euarchonta (primates, treeshrews and colugos). Cretaceous-Palaeocene adapisoriculid insectivores have also been proposed as early euarchontans based on postcranial similarities. We describe the first known dentally associated nyctitheriid auditory regions and postcrania, and use them to test the proposed relationship to Euarchonta with cladistic analyses of 415 dental, cranial and postcranial characteristics scored for 92 fossil and extant mammalian taxa. Although nyctitheriid postcrania share similarities with euarchontans likely related to arboreality, results of cladistic analyses suggest that nyctitheriids are closely related to Eulipotyphla. Adapisoriculidae is found to be outside of crown Placentalia. These results suggest that similarities in postcranial morphology among nyctitheriids, adapisoriculids and euarchontans represent separate instances of convergence or primitive retention of climbing capabilities.


Subject(s)
Bone and Bones/anatomy & histology , Fossils , Mammals/classification , Phylogeny , Animals , Mammals/anatomy & histology , Skull/anatomy & histology , Tooth/anatomy & histology
3.
Ecol Evol ; 7(14): 5041-5055, 2017 07.
Article in English | MEDLINE | ID: mdl-28770045

ABSTRACT

Accurate, quantitative characterization of complex shapes is recognized as a key methodological challenge in biology. Recent development of automated three-dimensional geometric morphometric protocols (auto3dgm) provides a promising set of tools to help address this challenge. While auto3dgm has been shown to be useful in characterizing variation across clades of morphologically very distinct mammals, it has not been adequately tested in more problematic cases where pseudolandmark placement error potentially confounds interpretation of true shape variation. Here, we tested the sensitivity of auto3dgm to the degree of variation and various parameterization settings using a simulation and three microCT datasets that characterize mammal tooth crown morphology as biological examples. The microCT datasets vary in degree of apparent morphological differentiation, with two that include grossly similar morphospecies and one that includes two laboratory strains of a single species. Resulting alignments are highly sensitive to the number of pseudolandmarks used to quantify shapes. The degree to which the surfaces were downsampled and the apparent degree of morphological differentiation across the dataset also influenced alignment repeatability. We show that previous critiques of auto3dgm were based on poorly parameterized alignments and suggest that sample-specific sensitivity analyses should be added to any research protocol including auto3dgm. Auto3dgm is a useful tool for studying samples when pseudolandmark placement error is small relative to the true differences between specimens. This method therefore represents a promising avenue forward in morphometric studies at a wide range of scales, from samples that differ by a single genetic locus to samples that represent multiple phylogenetically diverse clades.

SELECTION OF CITATIONS
SEARCH DETAIL