Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612611

ABSTRACT

Natural compounds like flavonoids preserve intestinal mucosal integrity through their antioxidant, anti-inflammatory, and antimicrobial properties. Additionally, some flavonoids show prebiotic abilities, promoting the growth and activity of beneficial gut bacteria. This study investigates the protective impact of Lens culinaris extract (LE), which is abundant in flavonoids, on intestinal mucosal integrity during LPS-induced inflammation. Using Caco-2 cells as a model for the intestinal barrier, the study found that LE did not affect cell viability but played a cytoprotective role in the presence of LPS. LE improved transepithelial electrical resistance (TEER) and tight junction (TJ) protein levels, which are crucial for barrier integrity. It also countered the upregulation of pro-inflammatory genes TRPA1 and TRPV1 induced by LPS and reduced pro-inflammatory markers like TNF-α, NF-κB, IL-1ß, and IL-8. Moreover, LE reversed the LPS-induced upregulation of AQP8 and TLR-4 expression. These findings emphasize the potential of natural compounds like LE to regulate the intestinal barrier and reduce inflammation's harmful effects on intestinal cells. More research is required to understand their mechanisms and explore therapeutic applications, especially for gastrointestinal inflammatory conditions.


Subject(s)
Lens Plant , Humans , Caco-2 Cells , Lipopolysaccharides/toxicity , Acetonitriles , Flavonoids , Inflammation/drug therapy
2.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673878

ABSTRACT

Irritable bowel syndrome (IBS) involves low-grade mucosal inflammation. Among the various approaches capable of managing the symptoms, physical activity is still under investigation. Despite its benefits, it promotes oxidative stress and inflammation. Mitochondria impacts gut disorders by releasing damage-associated molecular patterns, such as cell-free mtDNA (cf-mtDNA), which support inflammation. This study evaluated the effects of a 12-week walking program on the cf-mtDNA and DNase in 26 IBS and 17 non-IBS subjects. Pro- and anti-inflammatory cytokines were evaluated by ELISA. Digital droplet PCR was used to quantify cf-mtDNA; DNase activity was assessed using a single radial enzyme diffusion assay. PCR-RFLP was used to genotype DNASE1 rs1053874 SNP. Significantly lower IL-10 levels were found in IBS than in non-IBS individuals. Exercise reduced cf-mtDNA in non-IBS subjects but not in IBS patients. DNase activity did not correlate with the cf-mtDNA levels in IBS patients post-exercise, indicating imbalanced cf-mtDNA clearance. Different rs1053874 SNP frequencies were not found between groups. The study confirms the positive effects of regular moderate-intensity physical activity in healthy subjects and its role in cf-mtDNA release and clearance. Walking alone might not sufficiently reduce subclinical inflammation in IBS, based on imbalanced pro- and anti-inflammatory molecules. Prolonged programs are necessary to investigate their effects on inflammatory markers in IBS.


Subject(s)
Cell-Free Nucleic Acids , DNA, Mitochondrial , Irritable Bowel Syndrome , Walking , Humans , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/metabolism , DNA, Mitochondrial/genetics , Male , Female , Adult , Cell-Free Nucleic Acids/genetics , Middle Aged , Polymorphism, Single Nucleotide , Deoxyribonucleases/metabolism , Deoxyribonucleases/genetics , Exercise/physiology
SELECTION OF CITATIONS
SEARCH DETAIL