Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circ Res ; 132(5): 545-564, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36744494

ABSTRACT

OBJECTIVE: Mutations in BMPR2 (bone morphogenetic protein receptor 2) are associated with familial and sporadic pulmonary arterial hypertension (PAH). The functional and molecular link between loss of BMPR2 in pulmonary artery smooth muscle cells (PASMC) and PAH pathogenesis warrants further investigation, as most investigations focus on BMPR2 in pulmonary artery endothelial cells. Our goal was to determine whether and how decreased BMPR2 is related to the abnormal phenotype of PASMC in PAH. METHODS: SMC-specific Bmpr2-/- mice (BKOSMC) were created and compared to controls in room air, after 3 weeks of hypoxia as a second hit, and following 4 weeks of normoxic recovery. Echocardiography, right ventricular systolic pressure, and right ventricular hypertrophy were assessed as indices of pulmonary hypertension. Proliferation, contractility, gene and protein expression of PASMC from BKOSMC mice, human PASMC with BMPR2 reduced by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation were compared to controls, to investigate the phenotype and underlying mechanism. RESULTS: BKOSMC mice showed reduced hypoxia-induced vasoconstriction and persistent pulmonary hypertension following recovery from hypoxia, associated with sustained muscularization of distal pulmonary arteries. PASMC from mutant compared to control mice displayed reduced contractility at baseline and in response to angiotensin II, increased proliferation and apoptosis resistance. Human PASMC with reduced BMPR2 by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation showed a similar phenotype related to upregulation of pERK1/2 (phosphorylated extracellular signal related kinase 1/2)-pP38-pSMAD2/3 mediating elevation in ARRB2 (ß-arrestin2), pAKT (phosphorylated protein kinase B) inactivation of GSK3-beta, CTNNB1 (ß-catenin) nuclear translocation and reduction in RHOA (Ras homolog family member A) and RAC1 (Ras-related C3 botulinum toxin substrate 1). Decreasing ARRB2 in PASMC with reduced BMPR2 restored normal signaling, reversed impaired contractility and attenuated heightened proliferation and in mice with inducible loss of BMPR2 in SMC, decreasing ARRB2 prevented persistent pulmonary hypertension. CONCLUSIONS: Agents that neutralize the elevated ARRB2 resulting from loss of BMPR2 in PASMC could prevent or reverse the aberrant hypocontractile and hyperproliferative phenotype of these cells in PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Humans , Mice , beta-Arrestin 2/metabolism , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Cell Proliferation , Cells, Cultured , Endothelial Cells/metabolism , Glycogen Synthase Kinase 3/metabolism , Hypertension, Pulmonary/metabolism , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/metabolism , RNA/metabolism
2.
Circ Res ; 128(3): 401-418, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33322916

ABSTRACT

RATIONALE: In pulmonary arterial hypertension (PAH), endothelial dysfunction and obliterative vascular disease are associated with DNA damage and impaired signaling of BMPR2 (bone morphogenetic protein type 2 receptor) via two downstream transcription factors, PPARγ (peroxisome proliferator-activated receptor gamma), and p53. OBJECTIVE: We investigated the vasculoprotective and regenerative potential of a newly identified PPARγ-p53 transcription factor complex in the pulmonary endothelium. METHODS AND RESULTS: In this study, we identified a pharmacologically inducible vasculoprotective mechanism in pulmonary arterial and lung MV (microvascular) endothelial cells in response to DNA damage and oxidant stress regulated in part by a BMPR2 dependent transcription factor complex between PPARγ and p53. Chromatin immunoprecipitation sequencing and RNA-sequencing established an inducible PPARγ-p53 mediated regenerative program regulating 19 genes involved in lung endothelial cell survival, angiogenesis and DNA repair including, EPHA2 (ephrin type-A receptor 2), FHL2 (four and a half LIM domains protein 2), JAG1 (jagged 1), SULF2 (extracellular sulfatase Sulf-2), and TIGAR (TP53-inducible glycolysis and apoptosis regulator). Expression of these genes was partially impaired when the PPARγ-p53 complex was pharmacologically disrupted or when BMPR2 was reduced in pulmonary artery endothelial cells (PAECs) subjected to oxidative stress. In endothelial cell-specific Bmpr2-knockout mice unable to stabilize p53 in endothelial cells under oxidative stress, Nutlin-3 rescued endothelial p53 and PPARγ-p53 complex formation and induced target genes, such as APLN (apelin) and JAG1, to regenerate pulmonary microvessels and reverse pulmonary hypertension. In PAECs from BMPR2 mutant PAH patients, pharmacological induction of p53 and PPARγ-p53 genes repaired damaged DNA utilizing genes from the nucleotide excision repair pathway without provoking PAEC apoptosis. CONCLUSIONS: We identified a novel therapeutic strategy that activates a vasculoprotective gene regulation program in PAECs downstream of dysfunctional BMPR2 to rehabilitate PAH PAECs, regenerate pulmonary microvessels, and reverse disease. Our studies pave the way for p53-based vasculoregenerative therapies for PAH by extending the therapeutic focus to PAEC dysfunction and to DNA damage associated with PAH progression.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Endothelial Cells/drug effects , Imidazoles/pharmacology , Neovascularization, Physiologic/drug effects , PPAR gamma/metabolism , Piperazines/pharmacology , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Artery/drug effects , Regeneration/drug effects , Tumor Suppressor Protein p53/metabolism , Animals , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Gene Expression Regulation , Humans , Male , Mice , Mice, Knockout , Oxidative Stress , PPAR gamma/genetics , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/physiopathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Signal Transduction , Tumor Suppressor Protein p53/genetics
3.
Am J Respir Crit Care Med ; 206(8): 1019-1034, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35696338

ABSTRACT

Rationale: The role of neutrophils and their extracellular vesicles (EVs) in the pathogenesis of pulmonary arterial hypertension is unclear. Objectives: To relate functional abnormalities in pulmonary arterial hypertension neutrophils and their EVs to mechanisms uncovered by proteomic and transcriptomic profiling. Methods: Production of elastase, release of extracellular traps, adhesion, and migration were assessed in neutrophils from patients with pulmonary arterial hypertension and control subjects. Proteomic analyses were applied to explain functional perturbations, and transcriptomic data were used to find underlying mechanisms. CD66b-specific neutrophil EVs were isolated from plasma of patients with pulmonary arterial hypertension, and we determined whether they produce pulmonary hypertension in mice. Measurements and Main Results: Neutrophils from patients with pulmonary arterial hypertension produce and release increased neutrophil elastase, associated with enhanced extracellular traps. They exhibit reduced migration and increased adhesion attributed to elevated ß1-integrin and vinculin identified by proteomic analysis and previously linked to an antiviral response. This was substantiated by a transcriptomic IFN signature that we related to an increase in human endogenous retrovirus K envelope protein. Transfection of human endogenous retrovirus K envelope in a neutrophil cell line (HL-60) increases neutrophil elastase and IFN genes, whereas vinculin is increased by human endogenous retrovirus K deoxyuridine triphosphate diphosphatase that is elevated in patient plasma. Neutrophil EVs from patient plasma contain increased neutrophil elastase and human endogenous retrovirus K envelope and induce pulmonary hypertension in mice, mitigated by elafin, an elastase inhibitor. Conclusions: Elevated human endogenous retroviral elements and elastase link a neutrophil innate immune response to pulmonary arterial hypertension.


Subject(s)
Endogenous Retroviruses , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Antiviral Agents , Elafin/genetics , Elafin/metabolism , Elafin/pharmacology , Endogenous Retroviruses/metabolism , Familial Primary Pulmonary Hypertension/genetics , Humans , Hypertension, Pulmonary/genetics , Integrins/genetics , Integrins/metabolism , Leukocyte Elastase/metabolism , Mice , Neutrophils/metabolism , Proteomics , Vinculin/genetics , Vinculin/metabolism
4.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003272

ABSTRACT

Mechanical ventilation (MV) is a life-supporting strategy employed in the Intensive Care Unit (ICU). However, MV-associated mechanical stress exacerbates existing lung inflammation in ICU patients, resulting in limited improvement in mortality and a condition known as Ventilator-Induced Lung Injury (VILI). Sphingosine-1-phosphate (S1P) is a circulating bioactive lipid that maintains endothelial integrity primarily through S1P receptor 1 (S1PR1). During VILI, mechanical stress upregulates endothelial S1PR3 levels. Unlike S1PR1, S1PR3 mediates endothelial barrier disruption through Rho-dependent pathways. However, the specific impact of elevated S1PR3 on lung endothelial function, apart from Rho activation, remains poorly understood. In this study, we investigated the effects of S1PR3 in endothelial pathobiology during VILI using an S1PR3 overexpression adenovirus. S1PR3 overexpression caused cytoskeleton rearrangement, formation of paracellular gaps, and a modified endothelial response towards S1P. It resulted in a shift from S1PR1-dependent barrier enhancement to S1PR3-dependent barrier disruption. Moreover, S1PR3 overexpression induced an ADAM10-dependent cleavage of Vascular Endothelial (VE)-cadherin, which hindered endothelial barrier recovery. S1PR3-induced cleavage of VE-cadherin was at least partially regulated by S1PR3-mediated NFκB activation. Additionally, we employed an S1PR3 inhibitor TY-52156 in a murine model of VILI. TY-52156 effectively attenuated VILI-induced increases in bronchoalveolar lavage cell counts and protein concentration, suppressed the release of pro-inflammatory cytokines, and inhibited lung inflammation as assessed via a histological evaluation. These findings confirm that mechanical stress associated with VILI increases S1PR3 levels, thereby altering the pulmonary endothelial response towards S1P and impairing barrier recovery. Inhibiting S1PR3 is validated as an effective therapeutic strategy for VILI.


Subject(s)
Pneumonia , Ventilator-Induced Lung Injury , Humans , Mice , Animals , Sphingosine-1-Phosphate Receptors , Cadherins , Sphingosine/pharmacology , Ventilator-Induced Lung Injury/metabolism , Lysophospholipids/pharmacology , Receptors, Lysosphingolipid/metabolism , ADAM10 Protein , Membrane Proteins , Amyloid Precursor Protein Secretases
5.
Circulation ; 143(21): 2074-2090, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33764154

ABSTRACT

BACKGROUND: Metabolic alterations provide substrates that influence chromatin structure to regulate gene expression that determines cell function in health and disease. Heightened proliferation of smooth muscle cells (SMC) leading to the formation of a neointima is a feature of pulmonary arterial hypertension (PAH) and systemic vascular disease. Increased glycolysis is linked to the proliferative phenotype of these SMC. METHODS: RNA sequencing was applied to pulmonary arterial SMC (PASMC) from PAH patients with and without a BMPR2 (bone morphogenetic receptor 2) mutation versus control PASMC to uncover genes required for their heightened proliferation and glycolytic metabolism. Assessment of differentially expressed genes established metabolism as a major pathway, and the most highly upregulated metabolic gene in PAH PASMC was aldehyde dehydrogenase family 1 member 3 (ALDH1A3), an enzyme previously linked to glycolysis and proliferation in cancer cells and systemic vascular SMC. We determined if these functions are ALDH1A3-dependent in PAH PASMC, and if ALDH1A3 is required for the development of pulmonary hypertension in a transgenic mouse. Nuclear localization of ALDH1A3 in PAH PASMC led us to determine whether and how this enzyme coordinately regulates gene expression and metabolism in PAH PASMC. RESULTS: ALDH1A3 mRNA and protein were increased in PAH versus control PASMC, and ALDH1A3 was required for their highly proliferative and glycolytic properties. Mice with Aldh1a3 deleted in SMC did not develop hypoxia-induced pulmonary arterial muscularization or pulmonary hypertension. Nuclear ALDH1A3 converted acetaldehyde to acetate to produce acetyl coenzyme A to acetylate H3K27, marking active enhancers. This allowed for chromatin modification at NFYA (nuclear transcription factor Y subunit α) binding sites via the acetyltransferase KAT2B (lysine acetyltransferase 2B) and permitted NFY-mediated transcription of cell cycle and metabolic genes that is required for ALDH1A3-dependent proliferation and glycolysis. Loss of BMPR2 in PAH SMC with or without a mutation upregulated ALDH1A3, and transcription of NFYA and ALDH1A3 in PAH PASMC was ß-catenin dependent. CONCLUSIONS: Our studies have uncovered a metabolic-transcriptional axis explaining how dividing cells use ALDH1A3 to coordinate their energy needs with the epigenetic and transcriptional regulation of genes required for SMC proliferation. They suggest that selectively disrupting the pivotal role of ALDH1A3 in PAH SMC, but not endothelial cells, is an important therapeutic consideration.


Subject(s)
Aldehyde Oxidoreductases/genetics , Gene Expression Regulation , Pulmonary Arterial Hypertension/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
6.
Bioinformatics ; 37(22): 4033-4040, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34043002

ABSTRACT

MOTIVATION: Since the first recognized case of COVID-19, more than 100 million people have been infected worldwide. Global efforts in drug and vaccine development to fight the disease have yielded vaccines and drug candidates to cure COVID-19. However, the spread of SARS-CoV-2 variants threatens the continued efficacy of these treatments. In order to address this, we interrogate the evolutionary history of the entire SARS-CoV-2 proteome to identify evolutionarily conserved functional sites that can inform the search for treatments with broader coverage across the coronavirus family. RESULTS: Combining coronavirus family sequence information with the mutations observed in the current COVID-19 outbreak, we systematically and comprehensively define evolutionarily stable sites that may provide useful drug and vaccine targets and which are less likely to be compromised by the emergence of new virus strains. Several experimentally validated effective drugs interact with these proposed target sites. In addition, the same evolutionary information can prioritize cross reactive antigens that are useful in directing multi-epitope vaccine strategies to illicit broadly neutralizing immune responses to the betacoronavirus family. Although the results are focused on SARS-CoV-2, these approaches stem from evolutionary principles that are agnostic to the organism or infective agent. AVAILABILITY AND IMPLEMENTATION: The results of this work are made interactively available at http://cov.lichtargelab.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , Proteome , COVID-19 Vaccines , Viral Vaccines/genetics
7.
Nature ; 477(7365): 477-81, 2011 Sep 04.
Article in English | MEDLINE | ID: mdl-21892191

ABSTRACT

PPARγ is the functioning receptor for the thiazolidinedione (TZD) class of antidiabetes drugs including rosiglitazone and pioglitazone. These drugs are full classical agonists for this nuclear receptor, but recent data have shown that many PPARγ-based drugs have a separate biochemical activity, blocking the obesity-linked phosphorylation of PPARγ by Cdk5. Here we describe novel synthetic compounds that have a unique mode of binding to PPARγ, completely lack classical transcriptional agonism and block the Cdk5-mediated phosphorylation in cultured adipocytes and in insulin-resistant mice. Moreover, one such compound, SR1664, has potent antidiabetic activity while not causing the fluid retention and weight gain that are serious side effects of many of the PPARγ drugs. Unlike TZDs, SR1664 also does not interfere with bone formation in culture. These data illustrate that new classes of antidiabetes drugs can be developed by specifically targeting the Cdk5-mediated phosphorylation of PPARγ.


Subject(s)
Cyclin-Dependent Kinase 5/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , PPAR gamma/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Body Fluids/drug effects , COS Cells , Chlorocebus aethiops , Dietary Fats/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/chemistry , Ligands , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Models, Molecular , Obesity/chemically induced , Obesity/metabolism , Osteogenesis/drug effects , PPAR gamma/agonists , PPAR gamma/chemistry , Phosphorylation/drug effects , Phosphoserine/metabolism , Rosiglitazone , Thiazolidinediones/adverse effects , Thiazolidinediones/pharmacology , Transcription, Genetic/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Weight Gain/drug effects
8.
J Neuroradiol ; 44(1): 44-51, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27836654

ABSTRACT

BACKGROUND AND PURPOSE: Data about non-invasive follow-up of aneurysm after stent-assisted coiling is scarce. We aimed to compare time-of-flight (TOF) magnetic resonance angiography (MRA) (3D-TOF-MRA) and contrast-enhanced MRA (CE-MRA) at 3-Tesla, with digital subtraction angiography (DSA) for evaluating aneurysm occlusion and parent artery patency after stent-assisted coiling. MATERIALS AND METHODS: In this retrospective single-center study, patients were included if they had an intracranial aneurysm treated by stent-assisted coiling between March 2008 and June 2015, followed with both MRA sequences (3D-TOF-MRA and CE-MRA) at 3-Tesla and DSA, performed in an interval<48hours. RESULTS: Thirty-five aneurysms were included. Regarding aneurysm occlusion evaluation, agreement with DSA was better for CE-MRA (K=0.53) than 3D-TOF-MRA (K=0.28). Diagnostic accuracies for aneurysm remnant depiction were similar for 3D-TOF-MRA and CE-MRA (P=1). Both 3D-TOF-MRA (K=0.05) and CE-MRA (K=-0.04) were unable to detect pathological vessel compared to DSA, without difference in accuracy (P=0.68). For parent artery occlusion detection, agreement with DSA was substantial for 3D-TOF-MRA (K=0.64) and moderate for CE-MRA (K=0.45), with similar good diagnostic accuracies (P=1). CONCLUSION: After stent-assisted coiling treatment, 3D-TOF-MRA and CE-MRA demonstrated good accuracy to detect aneurysm remnant (but tended to overestimation). Although CE-MRA agreement with DSA was better, there was no statistical difference between 3D-TOF-MRA and CE-MRA accuracies. Both MRAs were unable to provide a precise evaluation of in-stent status but could detect parent vessel occlusion.


Subject(s)
Angiography, Digital Subtraction/methods , Embolization, Therapeutic , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/therapy , Magnetic Resonance Angiography/methods , Aged , Contrast Media , Female , Follow-Up Studies , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Observer Variation , Retrospective Studies , Sensitivity and Specificity , Stents , Treatment Outcome
9.
Phys Rev Lett ; 116(25): 258104, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27391757

ABSTRACT

Negative autoregulation is universally found across organisms. In the bacterium Escherichia coli, transcription factors often repress their own expression to form a negative feedback network motif that enables robustness to changes in biochemical parameters. Here we present a simple phenomenological model of a negative feedback transcription factor repressing both itself and another target gene. The strength of the negative feedback is characterized by three parameters: the cooperativity in self-repression, the maximal expression rate of the transcription factor, and the apparent dissociation constant of the transcription factor binding to its own promoter. Analysis of the model shows that the target gene levels are robust to mutations in the transcription factor, and that the robustness improves as the degree of cooperativity in self-repression increases. The prediction is tested in the LexA transcriptional network of E. coli by altering cooperativity in self-repression and promoter strength. Indeed, we find robustness is correlated with the former. Considering the proposed importance of gene regulation in speciation, parameters governing a transcription factor's robustness to mutation may have significant influence on a cell or organism's capacity to evolve.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation , Homeostasis , Mutation , Transcription, Genetic , Gene Regulatory Networks , Promoter Regions, Genetic , Transcription Factors
10.
Bioinformatics ; 29(21): 2714-21, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24021383

ABSTRACT

MOTIVATION: The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. METHODS AND RESULTS: We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. CONCLUSIONS: Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. CONTACT: lichtarge@bcm.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Protein Conformation , Sequence Analysis, Protein/methods , Algorithms , Bacterial Proteins/chemistry , Epistasis, Genetic , Evolution, Molecular , Molecular Sequence Annotation , Mutation , Proteins/chemistry , Proteins/genetics , Proteome/chemistry , Serine Endopeptidases/chemistry
11.
PLoS Genet ; 7(9): e1002244, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21912525

ABSTRACT

RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli/metabolism , Rec A Recombinases/metabolism , SOS Response, Genetics/genetics , Serine Endopeptidases/metabolism , Bacterial Proteins/genetics , Escherichia coli/genetics , Evolution, Molecular , Homologous Recombination/genetics , Mutagenesis, Site-Directed , Protein Conformation , Protein Interaction Domains and Motifs/genetics , Rec A Recombinases/genetics , Serine Endopeptidases/genetics
12.
Redox Biol ; 70: 103049, 2024 04.
Article in English | MEDLINE | ID: mdl-38295575

ABSTRACT

Once thought of in terms of bioenergetics, mitochondria are now widely accepted as both the orchestrator of cellular health and the gatekeeper of cell death. The pulmonary disease field has performed extensive efforts to explore the role of mitochondria in regulating inflammation, cellular metabolism, apoptosis, and oxidative stress. However, a critical component of these processes needs to be more studied: mitochondrial network dynamics. Mitochondria morphologically change in response to their environment to regulate these processes through fusion, fission, and mitophagy. This allows mitochondria to adapt their function to respond to cellular requirements, a critical component in maintaining cellular homeostasis. For that reason, mitochondrial network dynamics can be considered a bridge that brings multiple cellular processes together, revealing a potential pathway for therapeutic intervention. In this review, we discuss the critical modulators of mitochondrial dynamics and how they are affected in pulmonary diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), and pulmonary arterial hypertension (PAH). A dysregulated mitochondrial network plays a crucial role in lung disease pathobiology, and aberrant fission/fusion/mitophagy pathways are druggable processes that warrant further exploration. Thus, we also discuss the candidates for lung disease therapeutics that regulate mitochondrial network dynamics.


Subject(s)
Mitochondrial Dynamics , Pulmonary Disease, Chronic Obstructive , Humans , Oxidative Stress , Inflammation , Energy Metabolism
13.
Redox Biol ; 64: 102797, 2023 08.
Article in English | MEDLINE | ID: mdl-37392518

ABSTRACT

Mitochondria are highly dynamic organelles essential for cell metabolism, growth, and function. It is becoming increasingly clear that endothelial cell dysfunction significantly contributes to the pathogenesis and vascular remodeling of various lung diseases, including pulmonary arterial hypertension (PAH), and that mitochondria are at the center of this dysfunction. The more we uncover the role mitochondria play in pulmonary vascular disease, the more apparent it becomes that multiple pathways are involved. To achieve effective treatments, we must understand how these pathways are dysregulated to be able to intervene therapeutically. We know that nitric oxide signaling, glucose metabolism, fatty acid oxidation, and the TCA cycle are abnormal in PAH, along with alterations in the mitochondrial membrane potential, proliferation, and apoptosis. However, these pathways are incompletely characterized in PAH, especially in endothelial cells, highlighting the urgent need for further research. This review summarizes what is currently known about how mitochondrial metabolism facilitates a metabolic shift in endothelial cells that induces vascular remodeling during PAH.


Subject(s)
Hypertension, Pulmonary , Vascular Diseases , Humans , Hypertension, Pulmonary/metabolism , Vascular Remodeling , Endothelial Cells/metabolism , Lung/metabolism , Oxidative Stress , Vascular Diseases/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Cell Proliferation
14.
Nat Commun ; 14(1): 7578, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989727

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive disease in which pulmonary arterial (PA) endothelial cell (EC) dysfunction is associated with unrepaired DNA damage. BMPR2 is the most common genetic cause of PAH. We report that human PAEC with reduced BMPR2 have persistent DNA damage in room air after hypoxia (reoxygenation), as do mice with EC-specific deletion of Bmpr2 (EC-Bmpr2-/-) and persistent pulmonary hypertension. Similar findings are observed in PAEC with loss of the DNA damage sensor ATM, and in mice with Atm deleted in EC (EC-Atm-/-). Gene expression analysis of EC-Atm-/- and EC-Bmpr2-/- lung EC reveals reduced Foxf1, a transcription factor with selectivity for lung EC. Reducing FOXF1 in control PAEC induces DNA damage and impaired angiogenesis whereas transfection of FOXF1 in PAH PAEC repairs DNA damage and restores angiogenesis. Lung EC targeted delivery of Foxf1 to reoxygenated EC-Bmpr2-/- mice repairs DNA damage, induces angiogenesis and reverses pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Humans , Animals , Pulmonary Arterial Hypertension/genetics , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Pulmonary Artery/metabolism , DNA Damage , Bone Morphogenetic Protein Receptors, Type II/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
15.
Nat Commun ; 13(1): 3189, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680894

ABSTRACT

Since antibiotic development lags, we search for potential drug targets through directed evolution experiments. A challenge is that many resistance genes hide in a noisy mutational background as mutator clones emerge in the adaptive population. Here, to overcome this noise, we quantify the impact of mutations through evolutionary action (EA). After sequencing ciprofloxacin or colistin resistance strains grown under different mutational regimes, we find that an elevated sum of the evolutionary action of mutations in a gene identifies known resistance drivers. This EA integration approach also suggests new antibiotic resistance genes which are then shown to provide a fitness advantage in competition experiments. Moreover, EA integration analysis of clinical and environmental isolates of antibiotic resistant of E. coli identifies gene drivers of resistance where a standard approach fails. Together these results inform the genetic basis of de novo colistin resistance and support the robust discovery of phenotype-driving genes via the evolutionary action of genetic perturbations in fitness landscapes.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Escherichia coli Proteins , Escherichia coli , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Mutation
16.
Nat Commun ; 13(1): 3007, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637192

ABSTRACT

RNA polymerase III (Pol III) includes two alternate isoforms, defined by mutually exclusive incorporation of subunit POLR3G (RPC7α) or POLR3GL (RPC7ß), in mammals. The contributions of POLR3G and POLR3GL to transcription potential has remained poorly defined. Here, we discover that loss of subunit POLR3G is accompanied by a restricted repertoire of genes transcribed by Pol III. Particularly sensitive is snaR-A, a small noncoding RNA implicated in cancer proliferation and metastasis. Analysis of Pol III isoform biases and downstream chromatin features identifies loss of POLR3G and snaR-A during differentiation, and conversely, re-establishment of POLR3G gene expression and SNAR-A gene features in cancer contexts. Our results support a model in which Pol III identity functions as an important transcriptional regulatory mechanism. Upregulation of POLR3G, which is driven by MYC, identifies a subgroup of patients with unfavorable survival outcomes in specific cancers, further implicating the POLR3G-enhanced transcription repertoire as a potential disease factor.


Subject(s)
Neoplasms , RNA, Small Untranslated , Animals , Chromatin , Humans , Mammals/genetics , Neoplasms/genetics , Protein Isoforms/genetics , RNA Polymerase III/genetics , RNA Polymerase III/metabolism
17.
Structure ; 17(2): 303-13, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19217401

ABSTRACT

The crystal structures of two homologous endopeptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme were determined at 1.05 and 1.60 A resolution, respectively, and contain a bacterial SH3-like domain (SH3b) and a ubiquitous cell-wall-associated NlpC/P60 (or CHAP) cysteine peptidase domain. The NlpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that these two proteins act as gamma-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site.


Subject(s)
Endopeptidases/chemistry , Endopeptidases/metabolism , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Amino Acid Sequence , Anabaena variabilis/chemistry , Anabaena variabilis/enzymology , Catalytic Domain , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/physiology , Endopeptidases/physiology , Models, Biological , Models, Molecular , Molecular Sequence Data , Nostoc/chemistry , Nostoc/enzymology , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Substrate Specificity , src Homology Domains
18.
Res Sq ; 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33106800

ABSTRACT

Since the first recognized case of COVID-19, more than 100 million people have been infected worldwide. Global efforts in drug and vaccine development to fight the disease have yielded vaccines and drug candidates to cure COVID-19. However, the spread of SARS-CoV-2 variants threatens the continued efficacy of these treatments. In order to address this, we interrogate the evolutionary history of the entire SARS-CoV-2 proteome to identify evolutionarily conserved functional sites that can inform the search for treatments with broader coverage across the coronavirus family. Combining this information with the mutations observed in the current COVID-19 outbreak, we systematically and comprehensively define evolutionarily stable sites that may provide useful drug and vaccine targets and which are less likely to be compromised by the emergence of new virus strains. Several experimentally-validated effective drugs interact with these proposed target sites. In addition, the same evolutionary information can prioritize cross reactive antigens that are useful in directing multi-epitope vaccine strategies to illicit broadly neutralizing immune responses to the betacoronavirus family. Although the results are focused on SARS-CoV-2, these approaches stem from evolutionary principles that are agnostic to the organism or infective agent.

19.
JCI Insight ; 6(15)2021 08 09.
Article in English | MEDLINE | ID: mdl-34185707

ABSTRACT

We previously reported heightened expression of the human endogenous retroviral protein HERV-K deoxyuridine triphosphate nucleotidohydrolase (dUTPase) in circulating monocytes and pulmonary arterial (PA) adventitial macrophages of patients with PA hypertension (PAH). Furthermore, recombinant HERV-K dUTPase increased IL-6 in PA endothelial cells (PAECs) and caused pulmonary hypertension in rats. Here we show that monocytes overexpressing HERV-K dUTPase, as opposed to GFP, can release HERV-K dUTPase in extracellular vesicles (EVs) that cause pulmonary hypertension in mice in association with endothelial mesenchymal transition (EndMT) related to induction of SNAIL/SLUG and proinflammatory molecules IL-6 as well as VCAM1. In PAECs, HERV-K dUTPase requires TLR4-myeloid differentiation primary response-88 to increase IL-6 and SNAIL/SLUG, and HERV-K dUTPase interaction with melanoma cell adhesion molecule (MCAM) is necessary to upregulate VCAM1. TLR4 engagement induces p-p38 activation of NF-κB in addition to p-pSMAD3 required for SNAIL and pSTAT1 for IL-6. HERV-K dUTPase interaction with MCAM also induces p-p38 activation of NF-κB in addition to pERK1/2-activating transcription factor-2 (ATF2) to increase VCAM1. Thus in PAH, monocytes or macrophages can release HERV-K dUTPase in EVs, and HERV-K dUTPase can engage dual receptors and signaling pathways to subvert PAEC transcriptional machinery to induce EndMT and associated proinflammatory molecules.


Subject(s)
Endogenous Retroviruses , Epithelial-Mesenchymal Transition/immunology , Hypertension, Pulmonary , Macrophages/immunology , Monocytes/immunology , Pulmonary Artery , Pyrophosphatases/metabolism , Animals , CD146 Antigen/metabolism , Endogenous Retroviruses/metabolism , Endogenous Retroviruses/pathogenicity , Endothelial Cells/metabolism , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/virology , Inflammation/metabolism , Inflammation/virology , Mice , Pulmonary Artery/immunology , Pulmonary Artery/pathology , Signal Transduction , Snail Family Transcription Factors/metabolism
20.
J Biol Chem ; 284(37): 25268-79, 2009 Sep 11.
Article in English | MEDLINE | ID: mdl-19567872

ABSTRACT

SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 A resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic "whirly" single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners.


Subject(s)
Actinobacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Amino Acid Sequence , Binding Sites , Cell Division , Cryoelectron Microscopy , Crystallography, X-Ray/methods , Escherichia coli/metabolism , Genetic Complementation Test , Microscopy, Fluorescence/methods , Microscopy, Phase-Contrast/methods , Molecular Sequence Data , Mutation , Sequence Homology, Amino Acid , Spores, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL