ABSTRACT
Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin ß1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin ß1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.
Subject(s)
Epidermal Growth Factor , Integrin beta1 , Oocytes , Xenopus laevis , Animals , Acylation , Down-Regulation , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , GRB7 Adaptor Protein/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Meiosis , Oocytes/cytology , Oocytes/growth & development , Oocytes/metabolism , Spindle Apparatus/metabolism , Xenopus laevis/metabolismABSTRACT
Heavy metals are released into the environment in increasing amounts from different natural and anthropogenic sources. Among them, cadmium contaminates aquatic habitats and represents a threat to Amphibians. To assess the risks of exposure to cadmium in the aquatic environment, we studied the survival rate of early tadpoles of Xenopus laevis under exposure to CdCl2 for 6 days in the concentration range between 0.15 and 150⯵M of Cd2+. Tadpoles survived and reached stage 45 before feeding at all concentrations tested except 150⯵M Cd2+, which significantly induced death. With an exposure of 15⯵M Cd2+, tadpoles' mean body length decreased, heart rate increased, fastest swimming speed decreased, and distance traveled was greater compared to unexposed controls. Additionally, a witness of neuronal normal development, the neural cell adhesion molecules (NCAM) expression, was decreased. Moreover, this cell-surface glycoprotein exhibited higher polysialylation, a post-translational modification capable to reduce cell adhesion properties and to affect organ development. Our study highlights the effects of Cd2+ on a series of parameters including morphology, physiology, and behavior. They emphasize the deregulation of molecular NCAM suggesting this effector is an interesting biomarker to detect cadmic toxicity in early tadpoles.
ABSTRACT
Aluminium (Al) is the most common natural metallic element in the Earth's crust. It is released into the environment through natural processes and human activities and accumulates in aquatic environments. This review compiles scientific data on the neurotoxicity of aluminium contamination on the nervous system of aquatic organisms. More precisely, it helps identify biomarkers of aluminium exposure for aquatic environment biomonitoring in freshwater aquatic vertebrates. Al is neurotoxic and accumulates in the nervous system of aquatic vertebrates, which is why it could be responsible for oxidative stress. In addition, it activates and inhibits antioxidant enzymes and leads to changes in acetylcholinesterase activity, neurotransmitter levels, and in the expression of several neural genes and nerve cell components. It also causes histological changes in nerve tissue, modifications of organism behaviour, and cognitive deficit. However, impacts of aluminium exposure on the early stages of aquatic vertebrate development are poorly described. Lastly, this review also poses the question of how accurate aquatic vertebrates (fishes and amphibians) could be used as model organisms to complement biological data relating to the developmental aspect. This "challenge" is very relevant since freshwater pollution with heavy metals has increased in the last few decades.
Subject(s)
Aluminum/adverse effects , Aquatic Organisms/drug effects , Environmental Pollution/adverse effects , Nervous System/drug effects , Water Pollutants, Chemical/adverse effects , Animals , Fresh Water/chemistry , Humans , Vertebrates/physiologyABSTRACT
Xenopus oocytes were used as cellular and molecular sentinels to assess the effects of a new class of organometallic compounds called ferrocenyl dihydroquinolines that have been developed as potential anti-cancer agents. One ferrocenyl dihydroquinoline compound exerted deleterious effects on oocyte survival after 48 h of incubation at 100 µM. Two ferrocenyl dihydroquinoline compounds had an inhibitory effect on the resumption of progesterone induced oocyte meiosis, compared to controls without ferrocenyl groups. In these inhibited oocytes, no MPF (Cdk1/cyclin B) activity was detected by western blot analysis as shown by the lack of phosphorylation of histone H3. The dephosphorylation of the inhibitory Y15 residue of Cdk1 occurred but cyclin B was degraded. Moreover, two apoptotic death markers, the active caspase 3 and the phosphorylated histone H2, were detected. Only 7-chloro-1-ferrocenylmethyl-4-(phenylylimino)-1,4-dihydroquinoline (8) did not show any toxicity and allowed the assembly of a histologically normal metaphase II meiotic spindle while inhibiting the proliferation of cancer cell lines with a low IC50, suggesting that this compound appears suitable as an antimitotic agent.
Subject(s)
Ferrous Compounds/pharmacology , Oocytes/physiology , Progesterone/pharmacology , Quinolines/pharmacology , Xenopus Proteins/metabolism , Animals , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin B/metabolism , Female , Ferrous Compounds/chemistry , Gene Expression Regulation/drug effects , HeLa Cells , Histones/metabolism , Humans , Meiotic Prophase I , Molecular Structure , Oocytes/drug effects , Phosphorylation , Quinolines/chemistry , Xenopus laevis/metabolismABSTRACT
Nitric Oxide (NO) has been involved in both intra- and extra-cellular signaling pathways in a wide range of organisms, and can be detected in some reproductive tissues. Based upon previous results reporting that NO-donor SNAP (s-nitroso-n-acetyl penicillamine) promoted the release from the metaphase II-anaphase II block in amphibian eggs, the aim of the present study was to assess the influence of SNAP on the activation of the molecular mechanisms triggering meiotic resumption of Xenopus oocytes, analogous to G2/M transition of the cell cycle. A high concentration of SNAP (2.5 mM) was found to inhibit the appearance of the white spot (meiotic resumption) and promoted alteration of spindle morphogenesis leading to atypical structures lacking bipolarity and correct chromosomes equatorial alignment. The medium acidification (pH = 4) promoted by SNAP specifically impacted the white spot occurrence. However, even when pH was restored to 7.4 in SNAP medium, observed spindles remained atypical (microtubule disorganization), suggesting SNAP impacted spindle assembly regardless of the pH. n-Acetyl-d,l-penicillamine disulfide, a degradation product of SNAP with the same molecular characteristics, albeit without release of NO, yielded spindle assemblies typical of metaphase II suggesting the specificity of NO action on meiotic spindle morphogenesis in Xenopus oocytes.
Subject(s)
Nitric Oxide Donors/pharmacology , Oocytes/drug effects , S-Nitroso-N-Acetylpenicillamine/pharmacology , Spindle Apparatus/drug effects , Animals , Chromosomes/metabolism , Female , Meiosis/drug effects , Morphogenesis/drug effects , Oocytes/cytology , Xenopus laevisABSTRACT
The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.
Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cell Size , Flow Cytometry/methods , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Chloride Channels/metabolism , Humans , MCF-7 CellsABSTRACT
Knowledge about calcium signaling had increased thanks to the development and manipulation of various cell models. Among all of these prototypes, Xenopus laevis oocyte appears to be one of the most relevant. The understanding of the role of calcium during oocyte oogenesis, maturation and fertilization is facilitated by the big size of the cell but also by using imaging and electrophysiological approaches. So, this chapter presents how recordings of calcium-activated chloride channels and Store-Operated Calcium Channels activities lead to demonstrate the implication of the MPF in the uncoupling between intracellular calcium releasing and capacitative calcium entry. Moreover, it will help us to understand the several reorganizations happening consequently to the pH variations of maturation or just at the moment of fertilization.
Subject(s)
Calcium Signaling/physiology , Oocytes/metabolism , Xenopus laevis/metabolism , Animals , Calcium/metabolism , Embryonic Development , Fertilization , Hydrogen-Ion ConcentrationABSTRACT
Sialic acids are a family of 9-carbon monosaccharides with particular physicochemical properties. They modulate the biological functions of the molecules that carry them and are involved in several steps of the reproductive process. Sialoglycoproteins participate in the balance between species recognition and specificity, and the mechanisms of these aspects remain an issue in gametes formation and binding in metazoan reproduction. Sialoglycoproteins form a specific coat at the gametes surface and specific polysialylated chains are present on marine species oocytes. Spermatozoa are submitted to critical sialic acid changes in the female reproductive tract facilitating their migration, their survival through the modulation of the female innate immune response, and the final oocyte-binding event. To decipher the role of sialic acids in gametes and at fertilization, the dynamical changes of enzymes involved in their synthesis and removal have to be further considered.
ABSTRACT
Interplays between intracellular pH (pHi) and calcium ([Ca(2+)](i)) variations remain unclear, though both proton and calcium homeostasis changes accompany physiological events such as Xenopus laevis oocyte maturation. In this report, we used NH(4)Cl and changes of extracellular pH (pHe) to acidify the cytosol in a physiological range. In oocytes voltage-clamped at -80 mV, NH(4)Cl triggered an inward current, the main component of which is a Ca(2+)-dependent chloride current. Calcium imaging confirmed that NH(4)Cl provoked a [Ca(2+)](i) increase. The mobilized sources of calcium were discriminated using the triple-step protocol as a means to follow both the calcium-activated chloride currents (ICl-Ca) and the hyperpolarization- and acid-activated nonselective cation current (I(In)). These currents were stimulated during external addition of NH(4)Cl. This upregulation was abolished by BAPTA-AM, caffeine and heparin. By both buffering pHi changes with MOPS and by inhibiting calcium influx with lanthanum, intracellular acidification, initiated by NH(4)Cl and extracellular acidic medium, was shown to trigger a [Ca(2+)](i) increase through both calcium release and calcium influx. The calcium pathways triggered by pHe changes are similar to those activated by NH(4)Cl, thus suggesting that there is a robust signaling mechanism allowing the cell to adjust to variable environmental conditions.
Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Chlorine/metabolism , Oocytes/chemistry , Oocytes/metabolism , Animals , Cells, Cultured , Cytosol/chemistry , Hydrogen-Ion Concentration , Xenopus laevisABSTRACT
Amphibians are now recognized as the most endangered group. One of this decline causes is the degradation of their habitat through direct contamination of water, soil leaching, or runoff from surrounding contaminated soils and environments. In the North of France, the extensive industrial activities resulted in massive soil contamination by metal compounds. Mineral amendments were added to soils to decrease trace metal mobility. Because of the large areas to be treated, the use of inexpensive industrial by-products was favored. Two types of fly ashes were both tested in an experimental site with the plantation of trees in 2000. Aim of the present work was to investigate the effects of extracts from metal-contaminated soils treated or not for 10 years with fly ashes on Xenopus laevis oocyte using cell biology approaches. Indeed, our previous studies have shown that the Xenopus oocyte is a relevant model to study the metal ion toxicity. Survival and maturation of oocyte exposed to the soil extracts were evaluated by phenotypic approaches and electrophysiological recordings. An extract derived from a metal-contaminated soil treated for 10 years with sulfo-calcic ashes induced the largest effects. Membrane integrity appeared affected and ion fluxes in exposed oocytes were changed. Thus, it appeared that extracted elements from certain mineral amendments used to prevent the mobility of metals in the case of highly metal-contaminated soils could have a negative impact on X. laevis oocytes.
Subject(s)
Coal Ash/metabolism , Metals, Heavy/metabolism , Oocytes/drug effects , Soil Pollutants/metabolism , Soil/chemistry , Animals , Cell Cycle/drug effects , Coal Ash/chemistry , France , Heavy Metal Poisoning , Metals, Heavy/analysis , Oocytes/growth & development , Oocytes/physiology , Soil Pollutants/analysis , Xenopus laevisABSTRACT
Pesticides are often found at high concentrations in small ponds near agricultural field where amphibians are used to live and reproduce. Even if there are many studies on the impacts of phytopharmaceutical active ingredients in amphibian toxicology, only a few are interested in the earlier steps of their life cycle. While their populations are highly threatened with extinction. The aim of this work is to characterize the effects of glyphosate and its commercial formulation Roundup® GT Max on the Xenopus laevis oocyte maturation which is an essential preparation for the laying and the fertilization. Glyphosate is an extensively used herbicide, not only known for its effectiveness but also for its indirect impacts on non-target organisms. Our results showed that exposures to both forms of glyphosate delayed this hormone-dependent process and were responsible for spontaneous maturation. Severe and particular morphogenesis abnormalities of the meiotic spindle were also observed. The MAPK pathway and the MPF did not seem to be affected by exposures. The xenopus oocyte is particularly affected by the exposures and appears as a relevant model for assessing the effects of environmental contamination.
Subject(s)
Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Oocytes/drug effects , Xenopus laevis/growth & development , Animals , Xenopus laevis/metabolism , GlyphosateABSTRACT
The role of hydrogen sulfide (H2S) is addressed in Xenopuslaevis oocytes. Three enzymes involved in H2S metabolism, cystathionine ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, were detected in prophase I and metaphase II-arrested oocytes and drove an acceleration of oocyte meiosis resumption when inhibited. Moreover, meiosis resumption is associated with a significant decrease in endogenous H2S. On another hand, a dose-dependent inhibition was obtained using the H2S donor, NaHS (1 and 5 mM). NaHS impaired translation. NaHS did not induce the dissociation of the components of the M-phase promoting factor (MPF), cyclin B and Cdk1, nor directly impacted the MPF activity. However, the M-phase entry induced by microinjection of metaphase II MPF-containing cytoplasm was diminished, suggesting upstream components of the MPF auto-amplification loop were sensitive to H2S. Superoxide dismutase and catalase hindered the effects of NaHS, and this sensitivity was partially dependent on the production of reactive oxygen species (ROS). In contrast to other species, no apoptosis was promoted. These results suggest a contribution of H2S signaling in the timing of amphibian oocytes meiosis resumption.
Subject(s)
Hydrogen Sulfide/metabolism , Maturation-Promoting Factor/metabolism , Meiosis/drug effects , Oocytes/metabolism , Sulfides/pharmacology , Animals , Apoptosis/drug effects , Catalase/metabolism , Cell Cycle Proteins/metabolism , Cell Survival/drug effects , Cyclin B/metabolism , Cystathionine beta-Synthase/antagonists & inhibitors , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Cytoplasm/metabolism , Female , Meiotic Prophase I/drug effects , Metaphase/drug effects , Oocytes/chemistry , Oocytes/enzymology , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Sulfides/metabolism , Sulfurtransferases/antagonists & inhibitors , Sulfurtransferases/metabolism , Superoxide Dismutase/metabolism , Xenopus Proteins/metabolism , Xenopus laevis , cdc25 Phosphatases/metabolismABSTRACT
We investigated the potential variability of enzymatic antioxidant activities in blue mussels Mytilus edulis from a single intertidal population but living at different tidal heights. Activity levels of antioxidant enzymes (Cu/Zn superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione transferase) were measured in the gills and digestive gland of mussels sampled at high shore (HS, air-exposure>6h/12h) and low shore (LS, air-exposure<2h/12h) of an intertidal zone (Yport, Normandie, France) for two consecutive autumns. In both tissues, levels of each enzymatic activity (except GST) were clearly higher in HS mussels than in LS for the two years. These results suggest an ability to acclimate the enzymatic antioxidant defences to the degree of undergone stress, confirming the importance of environmental conditions in the antioxidant responses. Therefore, the location of organisms on the shore should be taken into account in sampling for ecotoxicological studies.
Subject(s)
Antioxidants/metabolism , Mytilus edulis/enzymology , Water Movements , Acclimatization , Animals , Catalase/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Seasons , Stress, Physiological , Superoxide Dismutase/metabolismABSTRACT
Environmental contamination is one of the major factors or cofactors affecting amphibian populations. Since 2000, the number of studies conducted in laboratory conditions to understand impacts of chemical exposures increased. They aimed to characterize biological effects on amphibians. This review proposes an overview of biological responses reported after exposures to metals, phytopharmaceuticals or emerging organic contaminants and focuses on endpoints relating to reproduction and development. Due to amphibian peculiar features, these periods of their life cycle are especially critical to pollutant exposures. Despite the large range of tested compounds, the same model species are often used as biological models and morphological alterations are the most studied observations. From the results, the laboratory-to-field extrapolation remained uneasy and exposure designs have to be more elaborated to be closer to environmental conditions. Few studies proposed such experimental approaches. Lastly, gametes, embryos and larvae constitute key stages of amphibian life cycle that can be harmed by exposures to freshwater pollutants. Specific efforts have to be intensified on the earliest stages and notably germ cells.
Subject(s)
Amphibians/embryology , Environmental Pollutants/toxicity , Environmental Pollution/adverse effects , Larva/drug effects , Life Cycle Stages/drug effects , Reproduction/drug effects , Animals , Organic Chemicals/toxicity , Pharmaceutical Preparations/analysisABSTRACT
The injection of the Grb2 adapter in Xenopus oocytes promotes G2/M transition without stimulation from a receptor only the first day after the oocytes removal from the ovaries. This cell cycle reinitiation is Ras-dependent and requires the SH2 and SH3 domains of Grb2. The SH2 domain of Grb2 binds the tyrosine phosphorylated lipovitellin1, a homologue of the human apolipoprotein B. The N-SH3 domain of Grb2 is linked to a proline-rich sequence of the C2 domain of PLC-gamma1, PLC-gamma1 itself is linked, through its SH3 domain, to the C-terminal proline-rich region of Sos. When Grb2-PLC-gamma1-Sos is associated, PLC-gamma1 is not phosphorylated on Y783 but shows a phospholipase activity. Inhibition of lipovitellin 1 or PLC-gamma1 avoids Grb2-induced cell cycle reinitiation. Therefore, the Grb2-lipovitellin 1 association is the starting point of a novel signaling pathway, where PLC-gamma1 binds Grb2 and recruits Sos.
Subject(s)
Cell Cycle , Egg Proteins/metabolism , GRB2 Adaptor Protein/metabolism , Phospholipase C gamma/metabolism , Signal Transduction , Son of Sevenless Proteins/metabolism , Xenopus Proteins/metabolism , Animals , Egg Proteins/chemistry , Female , GRB2 Adaptor Protein/chemistry , GRB2 Adaptor Protein/genetics , Membrane Potentials , Multiprotein Complexes/metabolism , Mutation , Oocytes , Phospholipase C gamma/chemistry , Phosphorylation , Protein Binding , Son of Sevenless Proteins/chemistry , Time Factors , Tyrosine/chemistry , Xenopus Proteins/chemistry , Xenopus laevis , ras Proteins/metabolism , src Homology DomainsABSTRACT
Since amphibians are recognised as good models to assess the quality of environments, only few studies have dealt with the impacts of chemical contaminants on their gametes, while toxic effects at this stage will alter all the next steps of their life cycle. Therefore, we propose to investigate the oocyte maturation of Xenopus laevis in cadmium- and lead-contaminated conditions. The impacts of cadmium and lead ions were explored on events involved in the hormone-dependent process of maturation. In time-course experiments, cadmium, at the highest concentration, delayed and prevented the germinal vesicle breakdown. Even in the absence of progesterone this ion could also induce it. No such spontaneous maturation was observed after lead exposures. An acceleration of the process at the highest tested concentration of lead (90µM), in presence of progesterone, was recorded. Cytological observations highlighted that cadmium exposures drove severe disturbances of meiotic spindle morphogenesis. At last, cadmium exposures altered the MAPK pathway, regarding the activation of ERK2 and RSK, but also the activation and the activity of the MPF, by disturbing the state of phosphorylation of Cdc2 and histone H3. Xenopus laevis oocytes were affected by these metal ion exposures, notably by Cd2+. Signatures of these metal exposures on the oocyte maturation were detected. This germ cell appeared to be a relevant model to assess the effects of environmental contaminants such as metals.
Subject(s)
Cadmium/toxicity , Lead/toxicity , Oocytes/drug effects , Water Pollutants, Chemical/toxicity , Animals , Cations, Divalent , Female , MAP Kinase Signaling System/drug effects , Maturation-Promoting Factor/metabolism , Meiosis , Oocytes/physiology , Phosphorylation , Progesterone/metabolism , Spindle Apparatus/drug effects , Xenopus laevisABSTRACT
Among the toxicological and ecotoxicological studies, few have investigated the effects on germ cells, gametes or embryos, while an impact at these stages will result in serious damage at a population level. Thus, it appeared essential to characterize consequences of environmental contaminant exposures at these stages. Therefore, we proposed to assess the effects of exposure to cadmium and lead ions, alone or in a binary mixture, on early stages of Xenopus laevis life cycle. Fertilization and cell division during segmentation were the studied endpoints. Cadmium ion exposures decreased in the fertilization rates in a concentration-dependent manner, targeting mainly the oocytes. Exposure to this metal ions induced also delays or blockages in the embryonic development. For lead ion exposure, no such effect was observed. For the exposure to the mixture of the two metal ions, concerning the fertilization success, we observed results similar to those obtained with the highest cadmium ion concentration.
Subject(s)
Cadmium/toxicity , Embryonic Development/drug effects , Fertilization/drug effects , Xenopus laevis/physiology , Animals , Germ Cells/drug effects , Oocytes/drug effects , Water Pollutants, Chemical/toxicity , Xenopus laevis/embryologyABSTRACT
Few studies have been conducted using Xenopus laevis germ cells as oocytes, though these cells offer many advantages allowing both electrophysiological studies and morphological examination. Our aim was to investigate the effects of metal (cadmium, lead, cobalt and zinc) exposures using cell biology approaches. First, cell survival was evaluated with both phenotypical and electrophysiological approaches. Secondly, the effect of metals on oocyte maturation was assessed with morphological observations and electrophysiological recordings. From survival experiments, our results showed that metal chlorides did not affect cell morphology but strongly depolarized X. laevis oocyte resting potential. In addition, cadmium chloride was able to inhibit progesterone-induced oocyte maturation. By contrast, zinc, but also to a lesser extent cadmium, cobalt and lead, were able to enhance spontaneous oocyte maturation in the absence of progesterone stimulation. Finally, electrophysiological recordings revealed that some metal chlorides (lead, cadmium) exposures could disturb calcium signaling in X. laevis oocyte by modifying calcium-activated chloride currents. Our results demonstrated the high sensitivity of X. laevis oocytes toward exogenous metals such as lead and cadmium. In addition, the cellular events recorded might have a predictive value of effects occurring later on the ability of oocytes to be fertilized. Together, these results suggest a potential use of this cellular lab model as a tool for ecotoxicological assessment of contaminated fresh waters.
Subject(s)
Chlorides/toxicity , Metals, Heavy/toxicity , Oocytes/drug effects , Animals , Cell Cycle/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Female , Oocytes/cytology , Oocytes/physiology , Progesterone/pharmacology , Xenopus laevisABSTRACT
Multi-drug resistance (MDR) in MCF7 breast cancer cells and multi-xenobiotic resistance (MXR) in mussel (Mytilus edulis) blood cells (MBC) are well known mechanisms that contribute to the decrease in intracellular concentrations of many unrelated but cytotoxic compounds. In the present work, we have carried out comparative investigations of the MDR/MXR protective mechanisms using a rapid colorimetric assay for cell viability and calcein accumulation for MDR/MXR activities. These studies were performed using cultured MCF7 and MBC before and after in vitro exposure to xenobiotics. Our results indicate that a 5-day exposure to doxorubicin or vincristine decreased calcein accumulation in MBC which is consistent with an induction of multi-xenobiotic resistance. The increase in calcein accumulation provoked by 1-h treatment with 50 microM verapamil was much lower in MBC when compared to the P-glycoprotein overexpressing MCF7 cell line. We conclude that such microplate assays could be used in primary cultures of MBC to estimate the effects of various chemicals on MXR activity.
Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Bivalvia/metabolism , Drug Resistance, Multiple/drug effects , Fluoresceins/metabolism , Hemocytes/metabolism , Analysis of Variance , Animals , Biological Transport/drug effects , Cell Line, Tumor , Colorimetry , Doxorubicin/pharmacology , Fluorometry , Humans , Tetrazolium Salts , Thiazoles , Verapamil/pharmacology , Vincristine/pharmacology , Xenobiotics/pharmacologyABSTRACT
In marine and estuarine species, immunotoxic and/or immunomodulatory mechanisms are the crossroad of interactions between xenobiotics, microorganisms and physicochemical variations of the environment. In mussels, immunity relies exclusively on innate responses carried out by cells collectively called hemocytes and found in the open hemolymphatic circulatory system of these organisms. However, hemocytes do not form a homogenous population of immune cells since distinct subtypes of mussel blood cells can be distinguished by cytochemistry, flow cytometry or cell motility analysis. Previous studies have also shown that these cells are able to efflux xenobiotics by means of ATP binding cassette (ABC) transporter activities conferring a multixenobiotic resistance (MXR) phenotype. ABC transporters corresponding to vertebrate class B/P-glycoprotein (P-gp) and to class C/multidrug resistance related protein (MRP) are characterized in Mytilidae. Herein, we have investigated the relative contributions of ABCB- and ABCC-mediated efflux within the different hemocyte subpopulations of Mytilus edulis mussels, collected from areas differentially impacted by chemical contaminants in Normandy (France). RT-PCR analyses provide evidence for the presence of ABCB and ABCC transporters transcripts in hemocytes. Immunodetection of ABCB/P-gp with the monoclonal antibody UIC2 in living hemocytes revealed that expression was restricted to granular structures of spread cells. Efflux transporter activities, with calcein-AM as fluorescent probe, were measured by combining flow cytometry to accurate Coulter cell size measurements in order to get a cell-volume normalized fluorescence concentration. In these conditions, basal fluorescence levels were higher in hemocytes originating from Yport (control site) than in cells collected from the harbor of Le Havre, where mussels are more exposed to with persistent pollutants. By using specific ABCB/P-gp (verapamil, PSC833, zosuquidar) and ABCC/MRP (MK571) blockers, we show that MXR activity is only carried out by MRP-type transporters in M. edulis hemocytes. In addition, cell-type-gated flow cytometry and calculation of the MXR activity factor indicate that ABCC-efflux activity is higher and more inducible in eosinophilic granulocytes than in other hemocyte subtypes. We conclude that, in the hemocytes of M. edulis, MXR phenotype is mediated by an ABCC/MRP-type transporter activity principally supported by eosinophilic granulocytes. A role for ABC transporters in hemocyte migration is discussed.