Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Publication year range
1.
Am J Physiol Endocrinol Metab ; 320(3): E641-E652, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33427052

ABSTRACT

Pegylated arginine deiminase (ADI-PEG20) results in the depletion of arginine with the production of isomolar amounts of citrulline. This citrulline has the potential to be utilized by the citrulline recycling pathway regenerating arginine and sustaining tissue arginine availability. The goal of this research was to test the hypothesis that ADI-PEG20 depletes circulating arginine in pigs but maintains tissue arginine concentration and function, and to characterize the kinetics of citrulline and arginine. Two multitracer approaches (bolus dose and primed-continuous infusion) were used to investigate the metabolism of arginine and citrulline in Control (n = 7) and ADI-PEG20 treated (n = 8) pigs during the postprandial period. In addition, blood pressure was monitored by telemetry, and multiple tissues were collected to determine arginine concentration. Plasma arginine was depleted immediately after ADI-PEG20 administration, with an increase in plasma citrulline concentration (P < 0.01). The depletion of arginine did not affect (P > 0.10) blood pressure, whole body protein synthesis, or urea production. Despite the lack of circulating arginine in ADI-PEG20-treated pigs, most tissues were able to maintain concentrations similar (P > 0.10) to those in Control animals. The kinetics of citrulline and arginine indicated the high citrulline turnover and regeneration of arginine through the citrulline recycling pathway. ADI-PEG20 administration resulted in an absolute and almost instantaneous depletion of circulating arginine, thus reducing global availability without affecting cardiovascular parameters and protein metabolism. The citrulline produced from the deimination of arginine was in turn utilized by the citrulline recycling pathway restoring local tissue arginine availability.NEW & NOTEWORTHY Pegylated arginine deiminase depletes circulating arginine, but the citrulline generated is utilized by multiple tissues to regenerate arginine and sustain local arginine availability. Preempting the arginine depletion that occurs as result of sepsis and trauma with arginine deiminase offers the possibility of maintaining tissue arginine availability despite negligible plasma arginine concentrations.


Subject(s)
Arginine/blood , Arginine/pharmacokinetics , Hydrolases/pharmacology , Polyethylene Glycols/pharmacology , Animals , Biological Availability , Citrulline/blood , Female , Kinetics , Male , Swine , Tissue Distribution/drug effects
2.
Am J Physiol Renal Physiol ; 318(1): F175-F182, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31760772

ABSTRACT

Developmental changes in the renal expression and activity of argininosuccinate synthase (ASS1) and argininosuccinate lyase (ASL), enzymes that use citrulline for the production of arginine, have been reported. Thus, the ability of neonates, and especially premature neonates, to produce arginine may be compromised. To determine the utilization of citrulline in vivo, we measured renal expression of ASS1 and ASL and conducted citrulline compartmental and noncompartmental kinetics using [15N]citrulline in pigs of five different ages (from 10 days preterm to 5 wk of age). The tracer was given in substrate amounts to also test the ability of neonatal pigs to use exogenous citrulline. Preterm and term pigs at birth had lower ASS1 and ASL expression than older animals, which was reflected in the longer half-life of citrulline in the neonatal groups. The production and utilization of citrulline by 1-wk-old pigs was greater than in pigs of other ages, including 5-wk-old animals. Plasma citrulline concentration was not able to capture these differences in citrulline production and utilization. In conclusion, the developmental changes in renal ASS1 and ASL gene expression are reflected in the ability of the pigs to use citrulline. However, it seems that there is an excess capacity to use citrulline at all ages, including during prematurity, since the bolus dose of tracer did not result in an increase in endogenous citrulline. Our results support the idea that citrulline supplementation in neonatal, including premature, pigs is a viable option to increase arginine availability.


Subject(s)
Aging/metabolism , Arginine/metabolism , Citrulline/metabolism , Animals , Animals, Newborn , Female , Kidney/metabolism , Male , Swine
3.
J Nutr ; 150(12): 3133-3140, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33188387

ABSTRACT

BACKGROUND: Sex differences in plasma concentration of arginine and arginase activity of different tissues have been reported in mice. In addition, male but not female C57BL/6 mice have a dietary arginine requirement for growth. OBJECTIVE: The goal of this research was to test the hypothesis that arginase II is a key factor in the sexual dimorphism of arginine metabolism. METHODS: Young adult male and female wild type (WT), and heterozygous and arginase II knockout mice on a C57BL/6 background mice were infused with labeled citrulline, arginine, ornithine, phenylalanine, and tyrosine to determine the rates of appearance and interconversion of these amino acids. Tissue arginase activity was measured in the liver, heart, jejunum, kidney, pancreas, and spleen with an arginine radioisotope. The effect of genotype, sex, and their interaction was tested. RESULTS: Female mice produced ∼36% more citrulline than their male littermates, which translated into a greater arginine endogenous synthesis, flux, and plasma concentration (42, 6, and 27%, respectively; P < 0.001). Female mice also had a greater phenylalanine flux (10%) indicating a greater rate of whole protein breakdown; however, they had a lower protein synthesis rate than males (18%; P < 0.001). The ablation of arginase II reduced the production of citrulline and the de novo synthesis of arginine in females and increased the rate of appearance of arginine and plasma arginine concentration in male mice (16 and 22%, respectively; P < 0.001). No effect of arginase II deletion, however, was observed for whole-body protein kinetics. Arginase II activity was present in the pancreas, kidney, jejunum, and spleen; WT females had a ∼2-fold greater renal arginase activity than their WT counterparts. CONCLUSIONS: A clear sexual dimorphism exists in the endogenous synthesis of arginine and its disposal. Female mice have a greater arginine availability than their male littermates. The ablation of arginase II increases arginine availability in male mice.


Subject(s)
Amino Acids/metabolism , Arginase/metabolism , Arginine/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Amino Acids/pharmacology , Animals , Arginase/genetics , Arginine/blood , Arginine/pharmacology , Citrulline/blood , Citrulline/metabolism , Female , Gene Expression Regulation, Enzymologic/physiology , Genotype , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
4.
Am J Physiol Gastrointest Liver Physiol ; 316(5): G641-G652, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30920308

ABSTRACT

Enteroendocrine L cells and glucagon-like peptide 2 (GLP-2) secretion are activated in the intestinal adaptation process following bowel resection in patients with short bowel syndrome. We hypothesized that enteral activation of Takeda G protein-coupled receptor 5 (TGR5), expressed in enteroendocrine L cells, could augment endogenous GLP-2 secretion and the intestinal adaptation response. Our aim was to assess the efficacy of different TGR5 agonists to stimulate GLP-2 secretion and intestinal adaptation in a piglet short-bowel model. In study 1, parenterally fed neonatal pigs (n = 6/group) were gavaged with vehicle, olive extract (OE; 10 or 50 mg/kg), or ursolic acid (UA; 10 mg/kg), and plasma GLP-2 was measured for 6 h. In study 2, neonatal pigs (n = 6-8/group) were subjected to transection or 80% mid-small intestine resection and, after 2 days, assigned to treatments for 10 days as follows: 1) transection + vehicle (sham), 2) resection + vehicle (SBS), 3) resection + 30 mg UA (SBS + UA), and 4) resection + 180 mg/kg OE (SBS + OE). We measured plasma GLP-2, intestinal histology, cell proliferation, and gene expression, as well as whole body citrulline-arginine kinetics and bile acid profiles. In study 1, GLP-2 secretion was increased by UA and tended to be increased by OE. In study 2, SBS alone, but not additional treatment with either TGR5 agonist, resulted in increased mucosal thickness and crypt cell proliferation in remnant jejunum and ileum sections. SBS increased biliary and ileal concentration of bile acids and expression of inflammatory and farnesoid X receptor target genes, but these measures were suppressed by UA treatment. In conclusion, UA is an effective oral GLP-2 secretagogue in parenterally fed pigs but is not capable of augmenting GLP-2 secretion or the intestinal adaptation response after massive small bowel resection. NEW & NOTEWORTHY Therapeutic activation of endogenous glucagon-like peptide 2 (GLP-2) secretion is a promising strategy to improve intestinal adaptation in patients with short bowel syndrome. This study in neonatal pigs showed that oral supplementation with a selective Takeda G protein-coupled receptor 5 (TGR5) agonist is an effective approach to increase GLP-2 secretion. The results warrant further study to establish a more potent oral TGR5 agonist that can effectively improve intestinal adaptation in pediatric patients with SBS.


Subject(s)
Glucagon-Like Peptide 2/metabolism , Intestinal Mucosa/metabolism , Receptors, G-Protein-Coupled , Short Bowel Syndrome , Adaptation, Physiological , Animals , Animals, Newborn , Cell Proliferation , Disease Models, Animal , Enteroendocrine Cells/physiology , Intestine, Small/metabolism , Parenteral Nutrition/methods , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Short Bowel Syndrome/metabolism , Short Bowel Syndrome/therapy , Swine , Treatment Outcome
5.
Gastroenterology ; 155(6): 1967-1970.e6, 2018 12.
Article in English | MEDLINE | ID: mdl-30170115

ABSTRACT

BACKGROUND & AIMS: Despite advances in gene editing technologies, generation of tissue-specific knockout mice is time-consuming. We used CRISPR/Cas9-mediated genome editing to disrupt genes in livers of adult mice in just a few months, which we refer to as somatic liver knockouts. METHODS: In this system, Fah-/- mice are given hydrodynamic tail vein injections of plasmids carrying CRISPR/Cas9 designed to excise exons in Hpd; the Hpd-edited hepatocytes have a survival advantage in these mice. Plasmids that target Hpd and a separate gene of interest can therefore be used to rapidly generate mice with liver-specific deletion of nearly any gene product. RESULTS: We used this system to create mice with liver-specific knockout of argininosuccinate lyase, which develop hyperammonemia, observed in humans with mutations in this gene. We also created mice with liver-specific knockout of ATP binding cassette subfamily B member 11, which encodes the bile salt export pump. We found that these mice have a biochemical phenotype similar to that of Abcb11-/- mice. We then used this system to knock out expression of 5 different enzymes involved in drug metabolism within the same mouse. CONCLUSIONS: This approach might be used to develop new models of liver diseases and study liver functions of genes that are required during development.


Subject(s)
Argininosuccinate Lyase/genetics , CRISPR-Associated Protein 9/administration & dosage , CRISPR-Cas Systems/genetics , Gene Editing/methods , Liver/enzymology , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , Animals , Disease Models, Animal , Hepatocytes/enzymology , Hepatocytes/physiology , Mice , Mice, Knockout , Oxidoreductases/genetics , Phenotype , Plasmids/genetics
6.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G638-G649, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30048597

ABSTRACT

Necrotizing enterocolitis (NEC) is associated with low plasma arginine and vascular dysfunction. It is not clear whether low intestinal citrulline production, the precursor for arginine synthesis, occurs before and thus predisposes to NEC or if it results from tissue damage. This study was designed to test the hypothesis that whole body rates of citrulline, arginine, and nitric oxide synthesis are low in premature pigs and that they precede NEC. Piglets delivered by cesarean section at 103 days [preterm (PT)], 110 days [near-term (NT)], or 114 days [full-term (FT)] of gestation were given total parenteral nutrition and after 2 days orogastrically fed infant formula for 42 h to induce NEC. Citrulline and arginine fluxes were determined before and during the feeding protocol. Gross macroscopic and histological NEC scores and plasma fatty acid binding protein (iFABP) concentration were determined as indicators of NEC. Intestinal gene expression for enzymes of the arginine pathway were quantitated. A lower ( P < 0.05) survival rate was observed for PT (8/27) than for NT (9/9) and FT pigs (11/11). PT pigs had higher macroscopic gross ( P < 0.05) and histological NEC ( P < 0.05) scores and iFABP concentration ( P < 0.05) than pigs of more advanced gestational age. PT pigs had lower citrulline production and arginine fluxes ( P < 0.05) throughout and a reduced gene expression in genes of the citrulline-arginine pathway. In summary, intestinal enzyme expression and whole body citrulline and arginine fluxes were reduced in PT pigs compared with animals of more advance gestational age and preceded the development of NEC. NEW & NOTEWORTHY Arginine supplementation prevents necrotizing enterocolitis (NEC), the most common gastrointestinal emergency of prematurity. Citrulline (precursor for arginine) production is reduced during NEC, and this is believed to be a consequence of intestinal damage. In a swine model of NEC, we show that intestinal gene expression of the enzymes for citrulline production and whole body citrulline and arginine fluxes are reduced and precede the onset of NEC in premature pigs. Reduced citrulline production during prematurity may be a predisposition to NEC.


Subject(s)
Arginine/metabolism , Citrulline/metabolism , Enterocolitis, Necrotizing/etiology , Fetal Development , Intestinal Mucosa/metabolism , Nitric Oxide/metabolism , Animals , Enterocolitis, Necrotizing/metabolism , Enterocolitis, Necrotizing/pathology , Intestinal Mucosa/growth & development , Intestinal Mucosa/pathology , Swine
7.
Genet Med ; 20(7): 708-716, 2018 07.
Article in English | MEDLINE | ID: mdl-29693650

ABSTRACT

PURPOSE: Benzoate and phenylbutyrate are widely used in the treatment of urea cycle disorders, but detailed studies on pharmacokinetics and comparative efficacy on nitrogen excretion are lacking. METHODS: We conducted a randomized, three-arm, crossover trial in healthy volunteers to study pharmacokinetics and comparative efficacy of phenylbutyrate (NaPB; 7.15 g•m-2BSA•day-1), benzoate (NaBz; 5.5 g•m-2BSA•day-1), and a combination of two medications (MIX arm; 3.575 g NaPB and 2.75 g NaBz•m-2BSA•day-1) on nitrogen excretion. Stable isotopes were used to study effects on urea production and dietary nitrogen disposal. RESULTS: The conjugation efficacy for both phenylbutyrate and benzoate was 65%; conjugation was superior at the lower dose used in the MIX arm. Whereas NaPB and MIX treatments were more effective at excreting nitrogen than NaBz, nitrogen excretion as a drug conjugate was similar between phenylbutyrate and MIX arms. Nitrogen excreted per USD was higher with combination therapy compared with NaPB. CONCLUSION: Phenylbutyrate was more effective than benzoate at disposing nitrogen. Increasing phenylbutyrate dose may not result in higher nitrogen excretion due to decreased conjugation efficiency at higher doses. Combinatorial therapy with phenylbutyrate and benzoate has the potential to significantly decrease treatment cost without compromising the nitrogen disposal efficacy.


Subject(s)
Benzoates/pharmacokinetics , Phenylbutyrates/pharmacokinetics , Urea Cycle Disorders, Inborn/drug therapy , Adult , Benzoates/pharmacology , Female , Healthy Volunteers , Humans , Male , Middle Aged , Nitrogen/metabolism , Phenylbutyrates/pharmacology , Urea/metabolism
8.
J Nutr ; 148(9): 1415-1420, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30184221

ABSTRACT

Background: The endogenous production of arginine relies on the synthesis of citrulline by enteral ornithine transcarbamylase (OTC). Mutations in the gene coding for this enzyme are the most frequent cause of urea cycle disorders. There is a lack of correlation between in vivo metabolic function and DNA sequence, transcript abundance, or in vitro enzyme activity. Objective: The goal of the present work was to test the hypothesis that enteroids, a novel ex vivo model, are able to recapitulate the in vivo citrulline production of wild-type (WT) and mutant mice. Methods: Six-week-old male WT and OTC-deficient mice [sparse fur and abnormal skin (spf-ash) mutation] were studied. Urea and citrulline fluxes were determined in vivo, and OTC abundance was measured in liver and gut tissue. Intestinal crypts were isolated and cultured to develop enteroids. Ex vivo citrulline production and OTC abundance were determined in these enteroids. Results: Liver OTC abundance was lower (mean ± SE: 0.16 ± 0.01 compared with 1.85 ± 0.18 arbitrary units; P < 0.001) in spf-ash mice than in WT mice, but there was no difference in urea production. In gut tissue, OTC was barely detectable in mutant mice; despite this, a lower but substantial citrulline production (67 ± 3 compared with 167 ± 8 µmol · kg-1 · h-1; P < 0.001) was shown in the mutant mice. Enteroids recapitulated the in vivo findings of a very low OTC content accompanied by a reduced citrulline production (1.07 ± 0.20 compared with 4.64 ± 0.44 nmol · µg DNA-1 · d-1; P < 0.001). Conclusions: Enteroids recapitulate in vivo citrulline production and offer the opportunity to study the regulation of citrulline production in a highly manipulable system.


Subject(s)
Arginine/biosynthesis , Citrulline/biosynthesis , Intestines/enzymology , Mutation , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Animals , Disease Models, Animal , Liver/enzymology , Male , Mice , Mice, Inbred ICR , Mice, Mutant Strains , Ornithine Carbamoyltransferase Deficiency Disease/enzymology , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Tissue Culture Techniques , Urea/metabolism
9.
J Nutr ; 148(6): 844-850, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29878271

ABSTRACT

Background: The recycling of citrulline by argininosuccinate synthase 1 (ASS1) and argininosuccinate lyase (ASL) is crucial to maintain arginine availability and nitric oxide (NO) production. Pegylated arginine deiminase (ADI-PEG20) is a bacterial enzyme used to deplete circulating arginine. Objective: The goal of this research was to test the hypothesis that citrulline is able to sustain intracellular arginine availability for NO production in ADI-PEG20 arginine-depleted mice. Methods: Six- to 8-wk-old male C57BL/6J mice injected with ADI-PEG20 (5 IU) or saline (control) were used in 4 different studies. Arginine, citrulline, and NO kinetics were determined by using stable isotopes in unchallenged (study 1) and endotoxin-challenged (study 2) mice. Blood pressure was determined by telemetry for 6 d after ADI-PEG20 administration (study 3), and vasomotor activity and ASS1 and ASL gene expression were determined in mesenteric arteries collected from additional mice (study 4). Results: ADI-PEG20 administration resulted in arginine depletion (<1 compared with 111 ± 37 µmol/L) but in greater plasma citrulline concentrations (900 ± 123 compared with 76 ± 8 µmol/L; P < 0.001) and fluxes (402 ± 17 compared with 126 ± 4 µmol ⋅ kg-1 ⋅ h-1; P < 0.001) compared with controls. Endotoxin-challenged ADI-PEG20-treated mice produced less NO than controls (13 ± 1 compared with 27 ± 2 µmol ⋅ kg-1 ⋅ h-1; P < 0.001). No differences (P > 0.50) were observed for cardiovascular variables (heart rate, blood pressure) between ADI-PEG20-treated and control mice. Furthermore, no ex vivo vasomotor differences were observed between the 2 treatments. ADI-PEG20 administration resulted in greater gene expression of ASS1 (∼3-fold) but lower expression of ASL (-30%). Conclusion: ADI-PEG20 successfully depleted circulating arginine without any effect on cardiovascular endpoints in healthy mice but limited NO production after endotoxin challenge. Therefore, the citrulline recycling pathway can sustain local arginine availability independently from circulating arginine, satisfying the demand of arginine for endothelial NO production; however, it is unable to do so when a high demand for arginine is elicited by endotoxin.


Subject(s)
Arginine/deficiency , Citrulline/metabolism , Endotoxins/toxicity , Nitric Oxide/metabolism , Animals , Argininosuccinate Synthase , Gene Expression Regulation, Enzymologic/drug effects , Hydrolases , Isotope Labeling , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Polyethylene Glycols , Vasomotor System/drug effects , Vasomotor System/physiology
10.
Am J Physiol Endocrinol Metab ; 313(2): E233-E242, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28611027

ABSTRACT

The intestinal-renal axis for endogenous arginine synthesis is an interorgan process in which citrulline produced in the small intestine is utilized by the kidney for arginine synthesis. The function of this axis in neonates has been questioned because during this period the enzymes needed for arginine synthesis argininosuccinate synthase (ASS1) and lyase (ASL) are present in the gut. However, evidence of high plasma citrulline concentrations in neonates suggests otherwise. We quantified in vivo citrulline production in premature (10 days preterm), neonatal (7 days old), and young pigs (35 days old) using citrulline tracers. Neonatal pigs had higher fluxes (69 µmol·kg-1·h-1, P < 0.001) than premature and young pigs (43 and 45 µmol·kg-1·h-1, respectively). Plasma citrulline concentration was also greater in neonatal pigs than in the other age groups. We also determined the site of synthesis and utilization of citrulline in neonatal and young pigs by measuring organ balances across the gut and the kidney. Citrulline was released from the gut and utilized by the kidney in both neonatal and young pigs. The abundance and localization of the enzymes involved in the synthesis and utilization were determined in intestinal and kidney tissue. Despite the presence of ASS1 and ASL in the neonatal small intestine, the lack of colocalization with the enzymes that produce citrulline results in the release of citrulline by the PDV and its utilization by the kidney to produce arginine. In conclusion, the intestinal-renal axis for arginine synthesis is present in the neonatal pig.


Subject(s)
Arginine/biosynthesis , Intestinal Mucosa/metabolism , Kidney/metabolism , Swine/metabolism , Animals , Animals, Domestic , Animals, Newborn , Arginine/blood , Cells, Cultured , Citrulline/blood , Citrulline/metabolism , Metabolic Networks and Pathways/physiology , Organ Culture Techniques , Premature Birth/metabolism , Premature Birth/veterinary , Sus scrofa , Swine/growth & development
11.
Am J Physiol Endocrinol Metab ; 312(3): E136-E149, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27894063

ABSTRACT

Mammalian glutaredoxin 3 (Grx3) has been shown to be important for regulating cellular redox homeostasis in the cell. Our previous studies indicate that Grx3 is significantly overexpressed in various human cancers including breast cancer and demonstrate that Grx3 controls cancer cell growth and invasion by regulating reactive oxygen species (ROS) and NF-κB signaling pathways. However, it remains to be determined whether Grx3 is required for normal mammary gland development and how it contributes to epithelial cell proliferation and differentiation in vivo. In the present study, we examined Grx3 expression in different cell types within the developing mouse mammary gland (MG) and found enhanced expression of Grx3 at pregnancy and lactation stages. To assess the physiological role of Grx3 in MG, we generated the mutant mice in which Grx3 was deleted specifically in mammary epithelial cells (MECs). Although the reduction of Grx3 expression had only minimal effects on mammary ductal development in virgin mice, it did reduce alveolar density during pregnancy and lactation. The impairment of lobuloalveolar development was associated with high levels of ROS accumulation and reduced expression of milk protein genes. In addition, proliferative gene expression was significantly suppressed with proliferation defects occurring in knockout MECs during alveolar development compared with wild-type controls. Therefore, our findings suggest that Grx3 is a key regulator of ROS in vivo and is involved in pregnancy-dependent mammary gland development and secretory activation through modulating cellular ROS.


Subject(s)
Epithelial Cells/metabolism , Glutaredoxins/genetics , Lactation/genetics , Mammary Glands, Animal/metabolism , Reactive Oxygen Species/metabolism , Animals , Blotting, Western , Cell Proliferation/genetics , Cyclin D1/genetics , Female , Gene Expression Regulation, Developmental , Immunohistochemistry , Mammary Glands, Animal/growth & development , Mice , Mice, Knockout , Milk Proteins/genetics , NF-kappa B/metabolism , Pregnancy , Pregnancy, Animal , RANK Ligand/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptors, Progesterone/metabolism , Signal Transduction
12.
J Nutr ; 147(8): 1510-1516, 2017 08.
Article in English | MEDLINE | ID: mdl-28679627

ABSTRACT

Background: Arginine is considered a semiessential amino acid in many species, including humans, because under certain conditions its demand exceeds endogenous production. Arginine availability, however, is determined not only by its production but also by its disposal. Manipulation of disposal pathways has the potential to increase availability and thus abolish the requirement for arginine.Objective: The objective of the study was to test the hypothesis that arginase II ablation increases arginine availability for growth.Methods: In a completely randomized design with a factorial arrangement of treatments, postweaning growth was determined for 3 wk in male and female wild-type (WT) mice and arginase II knockout mice (ARGII) on a C57BL/6J background fed arginine-sufficient [Arg(+); 8 g arginine/kg] or arginine-free [Arg(-)] diets. Tracers were used to determine citrulline and arginine kinetics.Results: A sex dimorphism in arginine metabolism was detected; female mice had a greater citrulline flux (∼30%, P < 0.001), which translated to greater de novo synthesis of arginine (∼31%, P < 0.001). Female mice also had greater arginine fluxes (P < 0.015) and plasma arginine concentrations (P < 0.01), but a reduced arginine clearance rate (P < 0.001). Ablation of arginase II increased plasma arginine concentrations in both sexes (∼27%, P < 0.01) but increased arginine flux only in males (P < 0.01). The absence of arginine in the diet limited the growth of male WT mice (P < 0.01), but had no effect on male ARGII mice (P = 0.12). In contrast, WT females on the Arg(-) diet grew at the same rate and achieved final weight similar to that of female WT mice fed the Arg(+) diet (P = 0.47).Conclusion: The ablation of arginase II in male mice spares arginine that can then be used for growth and to meet other metabolic functions, thus abolishing arginine requirements.


Subject(s)
Arginase/metabolism , Arginine/pharmacokinetics , Diet , Growth , Nutritional Requirements , Sex Characteristics , Animals , Arginase/genetics , Arginine/biosynthesis , Arginine/blood , Biological Availability , Citrulline/blood , Citrulline/pharmacokinetics , Female , Growth/physiology , Male , Mice, Inbred C57BL , Mice, Knockout , Random Allocation , Sex Factors , Weaning
13.
J Nutr ; 147(4): 596-602, 2017 04.
Article in English | MEDLINE | ID: mdl-28179487

ABSTRACT

Background: Arginine is considered to be an essential amino acid in various (patho)physiologic conditions of high demand. However, dietary arginine supplementation suffers from various drawbacks, including extensive first-pass extraction. Citrulline supplementation may be a better alternative than arginine, because its only fate in vivo is conversion into arginine.Objective: The goal of the present research was to determine the relative efficiency of arginine and citrulline supplementation to improve arginine availability.Methods: Six-week-old C57BL/6J male mice fitted with gastric catheters were adapted to 1 of 7 experimental diets for 2 wk. The basal diet contained 2.5 g l-arginine/kg, whereas the supplemented diets contained an additional 2.5, 7.5, and 12.5 g/kg diet of either l-arginine or l-citrulline. On the final day, after a 3-h food deprivation, mice were continuously infused intragastrically with an elemental diet similar to the dietary treatment, along with l-[13C6]arginine, to determine the splanchnic first-pass metabolism (FPM) of arginine. In addition, tracers were continuously infused intravenously to determine the fluxes and interconversions between citrulline and arginine. Linear regression slopes were compared to determine the relative efficiency of each supplement.Results: Whereas all the supplemented citrulline (105% ± 7% SEM) appeared in plasma and resulted in a marginal increase of 86% in arginine flux, supplemental arginine underwent an ∼70% FPM, indicating that only 30% of the supplemental arginine entered the peripheral circulation. However, supplemental arginine did not increase arginine flux. Both supplements linearly increased (P < 0.01) plasma arginine concentration from 109 µmol/L for the basal diet to 159 and 214 µmol/L for the highest arginine and citrulline supplementation levels, respectively. However, supplemental citrulline increased arginine concentrations to a greater extent (35%, P < 0.01).Conclusions: Citrulline supplementation is more efficient at increasing arginine availability than is arginine supplementation itself in mice.


Subject(s)
Arginine/pharmacokinetics , Citrulline/pharmacology , Animal Feed/analysis , Animals , Arginase/genetics , Arginase/metabolism , Arginine/administration & dosage , Biological Availability , Carrier Proteins/genetics , Carrier Proteins/metabolism , Citrulline/administration & dosage , Citrulline/pharmacokinetics , Diet/veterinary , Dietary Supplements , Gene Expression Regulation/drug effects , Liver/enzymology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL
14.
J Nutr ; 147(4): 549-555, 2017 04.
Article in English | MEDLINE | ID: mdl-28275102

ABSTRACT

Background: Glutamine is considered the main precursor for citrulline synthesis in many species, including humans. The transfer of 15N from 2-[15N]-glutamine to citrulline has been used as evidence for this precursor-product relation. However, work in mice has shown that nitrogen and carbon tracers follow different moieties of glutamine and that glutamine contribution to the synthesis of citrulline is minor. It is unclear whether this small contribution of glutamine is also true in other species.Objective: The objective of the present work was to determine the contribution of glutamine to citrulline production by using nitrogen and carbon skeleton tracers in multiple species.Methods: Humans (n = 4), pigs (n = 5), rats (n = 6), and mice (n = 5) were infused with l-2-[15N]- and l-[2H5]-glutamine and l-5,5-[2H2]-citrulline. The contribution of glutamine to citrulline synthesis was calculated by using different ions and fragments: glutamine M+1 to citrulline M+1, 2-[15N]-glutamine to 2-[15N]-citrulline, and [2H5]-glutamine to [2H5]-citrulline.Results: Species-specific differences in glutamine and citrulline fluxes were found (P < 0.001), with rats having the largest fluxes, followed by mice, pigs, and humans (all P < 0.05). The contribution of glutamine to citrulline as estimated by using glutamine M+1 to citrulline M+1 ranged from 88% in humans to 46% in pigs. However, the use of 2-[15N]-glutamine and 2-[15N]-citrulline as precursor and product yielded values of 48% in humans and 28% in pigs. Furthermore, the use of [2H5]-glutamine to [2H5]-citrulline yielded lower values (P < 0.001), resulting in a contribution of glutamine to the synthesis of citrulline of ∼10% in humans and 3% in pigs.Conclusions: The recycling of the [15N]-glutamine label overestimates the contribution of glutamine to citrulline synthesis compared with a tracer that follows the carbon skeleton of glutamine. Glutamine is a minor precursor for the synthesis of citrulline in humans, pigs, rats, and mice.


Subject(s)
Citrulline/biosynthesis , Glutamine/blood , Adult , Animals , Carbon Isotopes , Deuterium , Female , Humans , Isotope Labeling , Male , Mice , Mice, Inbred C57BL , Middle Aged , Nitrogen Isotopes , Rats , Rats, Sprague-Dawley , Species Specificity , Swine
16.
Curr Opin Clin Nutr Metab Care ; 19(1): 62-6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26560519

ABSTRACT

PURPOSE OF REVIEW: This article analyzes the contribution of glutamine to the synthesis of citrulline and reviews the evidence that glutamine supplementation increases citrulline production. RECENT FINDINGS: Glutamine supplementation has been proposed in the treatment of critically ill patients; however, a recent large multicenter randomized controlled trial resulted in increased mortality in the glutamine-supplemented group. Within this context, defining the contribution of glutamine to the production of citrulline, and thus to de-novo arginine synthesis, has become a pressing issue. SUMMARY: The beneficial effects of glutamine supplementation may be partially mediated by the effects of glutamine on citrulline synthesis by the gut and the de-novo synthesis of arginine by the kidney and other tissues. Although there is no strong evidence to support that glutamine is a major precursor for citrulline synthesis in humans, glutamine has the potential to increase overall gut function and in this way increase citrulline production.


Subject(s)
Citrulline/biosynthesis , Dietary Supplements , Gastrointestinal Tract/drug effects , Glutamine/pharmacology , Animals , Arginine/biosynthesis , Gastrointestinal Tract/metabolism , Glutamine/metabolism , Humans , Kidney/metabolism
17.
Am J Obstet Gynecol ; 214(4): 540.e1-540.e7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26874300

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) in lean individuals is not well studied and up to 26% of diabetes occurs in these individuals. Although the cause is not well understood, it has been primarily attributed to nutritional issues during early development. OBJECTIVE: Our objective was to develop a lean T2D model using gestational low-protein (LP) programming. STUDY DESIGN: Pregnant rats were fed control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery. Standard diet was given to dams after delivery and to pups after weaning. Glucose tolerance test was done at 2, 4, and 6 months of age. Magnetic resonance imaging of body fat for females was done at 4 months. Rats were sacrificed at 4 and 8 months of age and their perigonadal, perirenal, inguinal, and brown fat were weighed and expressed relative to their body weight. Euglycemic-hyperinsulinemic clamp was done around 6 months of age. RESULTS: Male and female offspring exposed to a LP diet during gestation developed glucose intolerance and insulin resistance (IR). Further, glucose intolerance progressed with increasing age and occurred earlier and was more severe in females when compared to males. Euglycemic-hyperinsulinemic clamp showed whole body IR in both sexes, with females demonstrating increased IR compared to males. LP females showed a 4.5-fold increase in IR while males showed a 2.5-fold increase when compared to their respective controls. Data from magnetic resonance imaging on female offspring showed no difference in the subcutaneous, inguinal, and visceral fat content. We were able to validate this observation by sacrificing the rats at 4 and 8 months and measuring total body fat content. This showed no differences in body fat content between control and LP offspring in either males or females. Additionally, diabetic rats had a similar body mass index to that of the controls. CONCLUSION: LP gestational programming produces a progressively worsening T2D model in rats with a lean phenotype without obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Diet, Protein-Restricted/adverse effects , Glucose Intolerance , Insulin Resistance , Prenatal Exposure Delayed Effects , Thinness , Adipose Tissue/anatomy & histology , Animals , Body Fat Distribution , Female , Magnetic Resonance Imaging , Male , Models, Animal , Pregnancy , Rats, Wistar , Sex Factors
18.
Am J Hum Genet ; 90(5): 836-46, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22541557

ABSTRACT

Argininosuccinate lyase (ASL) is required for the synthesis and channeling of L-arginine to nitric oxide synthase (NOS) for nitric oxide (NO) production. Congenital ASL deficiency causes argininosuccinic aciduria (ASA), the second most common urea-cycle disorder, and leads to deficiency of both ureagenesis and NO production. Subjects with ASA have been reported to develop long-term complications such as hypertension and neurocognitive deficits despite early initiation of therapy and the absence of documented hyperammonemia. In order to distinguish the relative contributions of the hepatic urea-cycle defect from those of the NO deficiency to the phenotype, we performed liver-directed gene therapy in a mouse model of ASA. Whereas the gene therapy corrected the ureagenesis defect, the systemic hypertension in mice could be corrected by treatment with an exogenous NO source. In an ASA subject with severe hypertension refractory to antihypertensive medications, monotherapy with NO supplements resulted in the long-term control of hypertension and a decrease in cardiac hypertrophy. In addition, the NO therapy was associated with an improvement in some neuropsychological parameters pertaining to verbal memory and nonverbal problem solving. Our data show that ASA, in addition to being a classical urea-cycle disorder, is also a model of congenital human NO deficiency and that ASA subjects could potentially benefit from NO supplementation. Hence, NO supplementation should be investigated for the long-term treatment of this condition.


Subject(s)
Argininosuccinic Aciduria/drug therapy , Argininosuccinic Aciduria/physiopathology , Genetic Therapy , Nitric Oxide/deficiency , Nitric Oxide/pharmacology , Adolescent , Animals , Arginine/blood , Argininosuccinate Lyase/genetics , Argininosuccinic Aciduria/complications , Argininosuccinic Aciduria/genetics , Child, Preschool , Chromatography, High Pressure Liquid , Disease Models, Animal , Humans , Hypertension/complications , Hypertension/drug therapy , Liver/enzymology , Male , Mice , Nitric Oxide/biosynthesis
20.
J Nutr ; 145(6): 1227-31, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25855119

ABSTRACT

BACKGROUND: In many species, including humans, arginine is considered a semiessential amino acid because under certain conditions endogenous synthesis cannot meet its demand. The requirements of arginine for growth in mice are ill defined and seem to vary depending on the genetic background of the mice. OBJECTIVE: The objective of this study was to determine the metabolic and molecular basis for the requirement of arginine in 2 mouse strains. METHODS: Institute of Cancer Research (ICR) and C57BL/6 (BL6) male mice were fed arginine-free or arginine-sufficient diets (Expt. 1) or 1 of 7 diets with increasing arginine concentration (from 0- to 8-g/kg diet, Expt. 2) between day 24 and 42 of life to determine the arginine requirements for growth. Citrulline production and "de novo" arginine synthesis were measured with use of stable isotopes, and arginine requirements were determined by breakpoint analysis and enzyme expression by reverse transcriptase-polymerase chain reaction. RESULTS: In Expt. 1, ICR mice grew at the same rate regardless of the arginine concentration of the diet (mean ± SE: 0.66 ± 0.04 g/d, P = 0.80), but BL6 mice had a reduced growth rate when fed the arginine-free diet (0.25 ± 0.02 g/d, P < 0.001) compared to the 8-g arginine/kg diet (0.46 ± 0.03 g/d). ICR mice showed at least a 2-fold greater expression (P < 0.001) of ornithine transcarbamylase (OTC) than BL6 mice, which translated into a greater rate of citrulline (25%) and arginine synthesis (49%, P < 0.002). In Expt. 2, breakpoint analysis showed that the requirement for growth of BL6 mice was met with 2.32 ± 0.39 g arginine/kg diet; for ICR mice, however, no breakpoint was found. CONCLUSION: Our data indicate that a reduced expression of OTC in BL6 mice translates into a reduced production of citrulline and arginine compared with ICR mice, which results in a dietary arginine requirement for growth in BL6 mice, but not in ICR mice.


Subject(s)
Arginine/administration & dosage , Citrulline/biosynthesis , Nutritional Requirements , Animals , Arginine/biosynthesis , Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL