Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Circ Res ; 134(8): 990-1005, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38456287

ABSTRACT

BACKGROUND: Growing evidence correlated changes in bioactive sphingolipids, particularly S1P (sphingosine-1-phosphate) and ceramides, with coronary artery diseases. Furthermore, specific plasma ceramide species can predict major cardiovascular events. Dysfunction of the endothelium lining lesion-prone areas plays a pivotal role in atherosclerosis. Yet, how sphingolipid metabolism and signaling change and contribute to endothelial dysfunction and atherosclerosis remain poorly understood. METHODS: We used an established model of coronary atherosclerosis in mice, combined with sphingolipidomics, RNA-sequencing, flow cytometry, and immunostaining to investigate the contribution of sphingolipid metabolism and signaling to endothelial cell (EC) activation and dysfunction. RESULTS: We demonstrated that hemodynamic stress induced an early metabolic rewiring towards endothelial sphingolipid de novo biosynthesis, favoring S1P signaling over ceramides as a protective response. This finding is a paradigm shift from the current belief that ceramide accrual contributes to endothelial dysfunction. The enzyme SPT (serine palmitoyltransferase) commences de novo biosynthesis of sphingolipids and is inhibited by NOGO-B (reticulon-4B), an ER membrane protein. Here, we showed that NOGO-B is upregulated by hemodynamic stress in myocardial EC of ApoE-/- mice and is expressed in the endothelium lining coronary lesions in mice and humans. We demonstrated that mice lacking NOGO-B specifically in EC (Nogo-A/BECKOApoE-/-) were resistant to coronary atherosclerosis development and progression, and mortality. Fibrous cap thickness was significantly increased in Nogo-A/BECKOApoE-/- mice and correlated with reduced necrotic core and macrophage infiltration. Mechanistically, the deletion of NOGO-B in EC sustained the rewiring of sphingolipid metabolism towards S1P, imparting an atheroprotective endothelial transcriptional signature. CONCLUSIONS: These data demonstrated that hemodynamic stress induced a protective rewiring of sphingolipid metabolism, favoring S1P over ceramide. NOGO-B deletion sustained the rewiring of sphingolipid metabolism toward S1P protecting EC from activation under hemodynamic stress and refraining coronary atherosclerosis. These findings also set forth the foundation for sphingolipid-based therapeutics to limit atheroprogression.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Animals , Mice , Ceramides/metabolism , Coronary Artery Disease/genetics , Coronary Artery Disease/prevention & control , Nogo Proteins , Sphingolipids/metabolism , Sphingosine/metabolism , Lysophospholipids/metabolism , Endothelium/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Apolipoproteins E
2.
EBioMedicine ; 107: 105264, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121579

ABSTRACT

BACKGROUND: The metabolic environment plays a crucial role in the development of heart failure (HF). Our prior research demonstrated that myo-inositol, a metabolite transported by the sodium-myo-inositol co-transporter 1 (SMIT-1), can induce oxidative stress and may be detrimental to heart function. However, plasmatic myo-inositol concentration has not been comprehensively assessed in large cohorts of patients with heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). METHODS: Plasmatic myo-inositol levels were measured using mass spectrometry and correlated with clinical characteristics in no HF subjects and patients with HFrEF and HFpEF from Belgian (male, no HF, 53%; HFrEF, 84% and HFpEF, 40%) and Canadian cohorts (male, no HF, 51%; HFrEF, 92% and HFpEF, 62%). FINDINGS: Myo-inositol levels were significantly elevated in patients with HF, with a more pronounced increase observed in the HFpEF population of both cohorts. After adjusting for age, sex, body mass index, hypertension, diabetes, and atrial fibrillation, we observed that both HFpEF status and impaired kidney function were associated with elevated plasma myo-inositol. Unlike HFrEF, abnormally high myo-inositol (≥69.8 µM) was linked to unfavourable clinical outcomes (hazard ratio, 1.62; 95% confidence interval, [1.05-2.5]) in patients with HFpEF. These elevated levels were correlated with NTproBNP, troponin, and cardiac fibrosis in this subset of patients. INTERPRETATION: Myo-inositol is a metabolite elevated in patients with HF and strongly correlated to kidney failure. In patients with HFpEF, high myo-inositol levels predict poor clinical outcomes and are linked to markers of cardiac adverse remodelling. This suggests that myo-inositol and its transporter SMIT1 may have a role in the pathophysiology of HFpEF. FUNDING: BECAME-HF was supported by Collaborative Bilateral Research Program Québec - Wallonie-Brussels Federation.

SELECTION OF CITATIONS
SEARCH DETAIL