Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Environ Geochem Health ; 46(3): 93, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367154

ABSTRACT

In recent decades, Saiga antelope (Saiga t. tatarica) mass die-offs have become more common. The mass die-off of 2015 in central Kazakhstan, recorded 140,000 individual deaths across multiple herds. Previously, research has shown atmospheric humidity, the bacterium Pasteurella multocida serotype B, and resultant haemorrhagic septicaemia, were the primary cause. However, other synergistic factors may have impacted this process. Here we use a multivariate compositional data analysis (CoDA) approach to assess what other factors may have been involved. We show a pollutant linkage mechanism where relative humidity and dewpoint temperature combine with environmental pollutants, potentially toxic elements (e.g., Hg, As), complex carbon compounds (e.g., Acetone, Toluene), and inorganic compounds (e.g., CHx, SO2) which affected the Saiga during the calving season (start and peak) and at the onset of the mass die-off. We suggest a mechanism for this process. Upon arrival at their carving grounds, the Saiga experienced a sudden precipitation event, a spike in temperatures, and resultant high humidity occurs. The infectious bacterium P. multocida serotype B then spreads. Further, environmental pollutants contained within steppe soils are released to the air, forming localised smog events, these synergistically combine, and mass die-off occurs.


Subject(s)
Antelopes , Environmental Pollutants , Animals , Antelopes/microbiology , Climate Change , Kazakhstan
2.
Anim Biotelemetry ; 10(1): 10, 2022.
Article in English | MEDLINE | ID: mdl-37521810

ABSTRACT

Background: Recent developments in both hardware and software of animal-borne data loggers now enable large amounts of data to be collected on both animal movement and behaviour. In particular, the combined use of tri-axial accelerometers, tri-axial magnetometers and GPS loggers enables animal tracks to be elucidated using a procedure of 'dead-reckoning'. Although this approach was first suggested 30 years ago by Wilson et al. (1991), surprisingly few measurements have been made in free-ranging terrestrial animals. The current study examines movements, interactions with habitat features, and home-ranges calculated from just GPS data and also from dead-reckoned data in a model terrestrial mammal, the European badger (Meles meles). Methods: Research was undertaken in farmland in Northern Ireland. Two badgers (one male, one female) were live-trapped and fitted with a GPS logger, a tri-axial accelerometer, and a tri-axial magnetometer. Thereafter, the badgers' movement paths over 2 weeks were elucidated using just GPS data and GPS-enabled dead-reckoned data, respectively. Results: Badgers travelled further using data from dead-reckoned calculations than using the data from only GPS data. Whilst once-hourly GPS data could only be represented by straight-line movements between sequential points, the sub-second resolution dead-reckoned tracks were more tortuous. Although there were no differences in Minimum Convex Polygon determinations between GPS- and dead-reckoned data, Kernel Utilisation Distribution determinations of home-range size were larger using the former method. This was because dead-reckoned data more accurately described the particular parts of landscape constituting most-visited core areas, effectively narrowing the calculation of habitat use. Finally, the dead-reckoned data showed badgers spent more time near to field margins and hedges than simple GPS data would suggest. Conclusion: Significant differences emerge when analyses of habitat use and movements are compared between calculations made using just GPS data or GPS-enabled dead-reckoned data. In particular, use of dead-reckoned data showed that animals moved 2.2 times farther, had better-defined use of the habitat (revealing clear core areas), and made more use of certain habitats (field margins, hedges). Use of dead-reckoning to provide detailed accounts of animal movement and highlight the minutiae of interactions with the environment should be considered an important technique in the ecologist's toolkit.

3.
Sci Total Environ ; 769: 145246, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33736251

ABSTRACT

Potentially Toxic Elements (PTEs) otherwise known as heavy metals are ubiquitous in soils and can have a range of negative health and environmental impacts. In terrestrial systems understanding how PTEs move in the environment is made challenging by the complex interactions within soil and the wider environment and the compositional nature of PTEs. PTEs are compositional because data of individual PTEs within in a sample are ratios which may be under a sum constraint, where individual components sum up to a whole. In this study three different scenarios were considered, one using the centred log ratio transformation (clr) a compositional transformation, the more "traditional" log10 transformation (log10) and untransformed data acting as a comparison (unt) were applied to four different datasets. Three were the Liver, Muscle and Kidney tissue of Eurasian Badgers (Meles meles) and the fourth was soil and data were extracted from a regional geospatial survey. Cluster analysis demonstrated that the clr and log10 transformation were able to resolve compositional trends at the point of the individual sample, whilst unt could not and did not meet the preconditions for the next phase of analysis. At the level of compositional trends between PTEs complex heatmaps demonstrated that clr was able to isolate PTE relationships and highlight commonalities between different datasets, whilst log10 could not. In the final phase, principal component analysis (PCA) of the clr transformation showed similarities between the signals in the soft tissues and the disparities they had with soil, whilst the log10 transformation was unable to achieve this. Overall, the clr transformation was shown to perform more consistently under a variety of analytical scenarios and the compositional approach will provide more realistic interpretations about PTEs in both soil and animal soft tissue than the log10 or unt conditions.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , Ecotoxicology , Environmental Monitoring , Metals, Heavy/analysis , Metals, Heavy/toxicity , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
4.
Sci Total Environ ; 762: 143087, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33131870

ABSTRACT

Potentially Toxic Elements (PTEs) in Badgers (Meles meles), otherwise known as heavy metals, are unique amongst environmental pollutants occurring, both naturally and anthropogenically. PTEs have a broad range of negative health and environmental effects, therefore identifying their sources and pathways through the environment is imperative for public health policy. This is difficult in terrestrial systems due to the compositional nature of soil geochemistry. In this study, a compositional statistical approach was used to identify how PTEs accumulate in a terrestrial carnivorous mammal, Eurasian Badgers (Meles meles). Compositional principal component analysis (PCA) was used on geochemical data from the Tellus survey, the soil baseline and badger tissue data to map geo-spatial patterns of PTEs and show accumulative trends measured in time. Mapping PCs identified distinct regions of PTE presence in soil and PTE accumulation in badger tissues in Northern Ireland. PTEs were most elevated in liver, kidney and then muscle tissues. Liver and kidney showed the most distinct geo-spatial patterns of accumulation and muscle was the most depleted. PC1 and 2 for each type were modelled using generalised additive mixed models (GAMM) to identify trends through time. PC1 for the liver and muscle were associated with rainfall and ∂N15 in the liver, showing a link to diet and a bioaccumulation pathway, whilst PC2 for both tissues was associated with mean temperature, showing a link to seasonal activity and a bioaccessibility pathway. However, in kidney tissue these trends are reversed and PC1 was associated with bioaccessibility and PC2 with bioaccumulation. Combined these techniques can elucidate both geo-spatial trends in PTEs and the mechanisms by which they move in environment and in future may be an effective tool for assessing PTE bioavailability in environmental health surveys.


Subject(s)
Metals, Heavy , Mustelidae , Soil Pollutants , Animals , Metals, Heavy/analysis , Northern Ireland , Soil , Soil Pollutants/analysis
5.
Mov Ecol ; 3(1): 23, 2015.
Article in English | MEDLINE | ID: mdl-26380711

ABSTRACT

BACKGROUND: Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to 'fill in the gaps' between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented. RESULTS: We perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles. CONCLUSIONS: This study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed.

6.
J Comp Neurol ; 415(4): 518-28, 1999 Dec 27.
Article in English | MEDLINE | ID: mdl-10570459

ABSTRACT

This study used electron microscopy and confocal scanning laser microscopy interfaced with cytochemistry to study neuromuscular interrelationships in the ovijector of Ascaris suum. An extensive nerve plexus with both FaRPergic and non-FaRPergic components extends over the outer surface of the ovijector. The non-FaRPergic component is derived from nerve branches of the ventral nerve cord, whereas the FaRPergic component emanates from two large FMRFamide-immunoreactive neurons. In the vagina vera, most myofibrils are circular in orientation and a number of them divide and run for short distances in longitudinal and diagonal directions, their myofilaments are also orientated in a variety of directions. Parallel nerve fibres run in tracts along the length of the vagina vera with branches that penetrate the muscle layers. The vagina uteri possesses a thicker hypodermis than that of the vagina vera. It appears rich in secretory and phagocytic vesicles and the luminal side is invested with an electron-dense substance. The musculature of the vagina uteri is less well developed than that of the vagina vera, being restricted to circular myofibrils, with an apparent diagonal arrangement of myofilaments. Also, the innervation is less extensive in the vagina uteri with many fibres returning to the vagina vera to rejoin the nerve net and others continuing into the uteri.


Subject(s)
Ascaris suum/anatomy & histology , Ascaris suum/chemistry , Genitalia, Female/chemistry , Genitalia, Female/ultrastructure , Muscle Fibers, Skeletal/chemistry , Muscle Fibers, Skeletal/ultrastructure , Neurons/chemistry , Neurons/ultrastructure , Animals , Ascaris suum/physiology , FMRFamide/analysis , Female , Ganglia, Invertebrate/chemistry , Ganglia, Invertebrate/physiology , Ganglia, Invertebrate/ultrastructure , Genitalia, Female/physiology , Muscle Fibers, Skeletal/physiology , Neurons/physiology , Phalloidine/analysis , Serotonin/analysis , Tubulin/analysis
7.
Mol Biochem Parasitol ; 100(2): 185-94, 1999 May 25.
Article in English | MEDLINE | ID: mdl-10391380

ABSTRACT

The FMRFamide-related peptides (FaRPs), KHEYLRFamide (AF2) and KSAYMRFamide (PF3) were structurally characterised from the parasitic nematode of sheep, Haemonchus contortus (MH isolate). Both peptides were sequenced in a single gas-phase sequencing run and their structure confirmed by mass spectrometry which identified peptides of 920 Da (C-terminally amidated AF2) and 902/918 Da (C-terminally amidated non-oxidised/oxidised PF3, respectively). AF2 had inhibitory effects on H. contortus muscle and inhibited acetylcholine (ACh, 10 microM)-induced contractions, with a threshold for activity of 1 microM. PF3 induced concentration-dependent contractions of H. contortus (activity threshold, 10 nM) and enhanced ACh contractions. Compared with the MH isolate, an isolate of H. contortus which has reduced sensitivity to cholinergic drugs (Lawes isolate) was less sensitive to the effects of PF3. The concentration-response curves for the cholinergic compounds ACh and levamisole (LEV), and PF3, but not a control, KPNFIRFamide (PF4), showed a statistically similar shift. This study implicates PF3 in the modulation of cholinergic function in H. contortus.


Subject(s)
FMRFamide/pharmacology , Haemonchus/physiology , Neuropeptides/chemistry , Neuropeptides/pharmacology , Amino Acid Sequence , Animals , Antinematodal Agents/pharmacology , FMRFamide/chemistry , FMRFamide/isolation & purification , Haemonchiasis/veterinary , Haemonchus/drug effects , Haemonchus/isolation & purification , Levamisole/pharmacology , Mass Spectrometry , Molecular Sequence Data , Muscle Contraction/drug effects , Neuropeptides/isolation & purification , Sheep , Sheep Diseases/parasitology
8.
Int J Parasitol ; 23(5): 617-25, 1993 Aug.
Article in English | MEDLINE | ID: mdl-8225764

ABSTRACT

The localization and distribution of cholinergic, serotoninergic and peptidergic nerve elements in the proteocephalidean tapeworm, Proteocephalus pollanicola, have been investigated by enzyme histochemistry, and by an indirect immunofluorescence technique interfaced with confocal scanning laser microscopy. Cholinesterase (ChE) activity was localized in the major components of the central nervous system (CNS) and the peripheral nervous system (PNS), including the innervation of the reproductive structures of the worm. Serotoninergic (5-HT) nerves were found in the paired cerebral ganglia, transverse commissure and in the 10 longitudinal nerve cords. Antisera to 17 mammalian regulatory peptides and the invertebrate peptide FMRFamide have been used to explore the peptidergic nervous system of the worm. The most extensive immunostaining occurred with antisera raised to members of the neuropeptide Y superfamily, namely neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP). In all cases, intense immunoreactivity was found in numerous cell bodies and fibres of both the CNS and PNS, including the innervation of the reproductive apparatus. FMRFamide antisera stained the same structures to a comparable degree as those raised to the NPY superfamily. Cholinergic and peptidergic elements were much more prevalent within the CNS, while the serotoninergic nerve fibres tended to dominate in the PNS. The overlap obtained in staining patterns for the peptidergic and cholinergic components suggests that there may be a certain amount of co-localization of peptides with small-molecule transmitter substances in the same neurone. Weak staining for the tachykinin, substance P and for calcitonin gene-related peptide (CGRP) was confined to the major longitudinal nerve cords.


Subject(s)
Cestoda/anatomy & histology , Cholinesterases/isolation & purification , Nervous System/chemistry , Neuropeptides/isolation & purification , Serotonin/isolation & purification , Animals , Histocytochemistry , Immunohistochemistry , Salmonidae/parasitology
9.
Int J Parasitol ; 24(7): 1011-8, 1994 Nov.
Article in English | MEDLINE | ID: mdl-7883435

ABSTRACT

5-HT-immunoreactivity in Entobdella soleae was found to be extensive throughout both the central and peripheral nervous systems, with the strongest staining occurring in the innervation of the forebody, most notably in the paired cerebral ganglia, pharynx and adhesive pads. In the reproductive system, staining was evident throughout the numerous cell bodies and fibres innervating the musculature of the egg-assembly apparatus. The haptor contained an extensive array of serotoninergic fibres derived from the main longitudinal cords; this array was associated with the haptoral muscles and sclerites, and possibly with the ventral sensory papillae.


Subject(s)
Neurochemistry , Serotonin/isolation & purification , Trematoda/chemistry , Animals , Flatfishes/parasitology , Fluorescent Antibody Technique , Serotonin/immunology , Trematoda/anatomy & histology
10.
Int J Parasitol ; 26(12): 1357-67, 1996 Dec.
Article in English | MEDLINE | ID: mdl-9024885

ABSTRACT

Cholinergic, serotoninergic (5-HT) and peptidergic neuronal pathways have been demonstrated in both central and peripheral nervous systems of adult Discocotyle sagittata, using enzyme histochemistry and indirect immunocytochemistry in conjunction with confocal scanning laser microscopy. Antisera to 2 native flatworm neuropeptides, neuropeptide F and the FMRFamide-related peptide (FaRP), GNFFRFamide, were employed to detect peptide immunoreactivity. The CNS is composed of paired cerebral ganglia and connecting dorsal commissure, together with several paired longitudinal nerve cords. The main longitudinal nerve cords (lateral, ventral and dorsal) are interconnected at intervals by a series of annular cross-connectives, producing a ladder-like arrangement typical of the platyhelminth nervous system. At the level of the haptor, the ventral cords provide nerve roots which innervate each of the 9 clamps. Cholinergic and peptidergic neuronal organisation was similar, but distinct from that of the serotoninergic components. The PNS and reproductive system are predominantly innervated by peptidergic neurones.


Subject(s)
Nervous System Physiological Phenomena , Nervous System/anatomy & histology , Neurons/cytology , Neuropeptides/analysis , Trematoda/anatomy & histology , Trematoda/physiology , Animals , Cholinesterases/analysis , FMRFamide , Ganglia, Invertebrate/anatomy & histology , Ganglia, Invertebrate/physiology , Helminth Proteins/analysis , Immunohistochemistry , Invertebrate Hormones/analysis , Microscopy, Confocal , Neurons/physiology , Serotonin/analysis , Trout/parasitology
11.
Int J Parasitol ; 33(8): 859-76, 2003 Jul 30.
Article in English | MEDLINE | ID: mdl-12865086

ABSTRACT

Caenorhabditis elegans possesses 22 FMRFamide-like peptide (flp) genes predicted to encode 60 different FMRFamide-related peptides with a range of C-terminal signatures. Peptides from five flp genes (1, 6, 8, 9 and 14) are known to modulate the ovijector of Ascaris suum in vitro. This study examines the physiological effects of peptides from the remaining 17 flp genes such that the variety of FMRFamide-related peptide-induced ovijector response types can be delineated. Five categories of response were identified according to the pattern of changes in contractile behaviour and baseline tension. Peptides encoded on 16 flp genes (1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 20) had qualitatively similar inhibitory (response type 1) actions, with the lowest activity thresholds (1 nM) recorded for peptides with FIRFamide or FLRFamide C-terminal signatures. Peptides encoded on four flp genes (2, 18, 19 and 21), and on the A. suum afp-1 gene, had excitatory actions on the ovijector (response type 2), with PGVLRFamides having the lowest activity threshold (1 nM). An flp-2 peptide (LRGEPIRFamide) induced a transient contraction of the ovijector (activity threshold, 10nM) that was designated response type 3. Response type 4 comprised a transient contraction followed by an extended period of inactivity and was observed with peptides encoded on flp-5 (AGAKFIRFamide, APKPKFIRFamide), flp-8 (KNEFIRFamide) and flp-22 (SPSAKWMRFamide). SPSAKWMRFamide was the most potent peptide tested with an activity threshold of 0.1 nM. A single peptide (AMRNALVRFamide; activity threshold 0.1 microM), encoded on flp-11, induced response type 5, a shortening of the ovijector coupled with an increase in contraction frequency. Although most flp genes encode structurally related peptides that trigger one of the five ovijector response types, flp-2 and flp-11 co-encode FMRFamide-related peptides that induce distinct responses. Within the ovijector of A. suum FaRPs play a complex role involving at least five receptor subtypes or signalling pathways.


Subject(s)
Ascaris suum/drug effects , Caenorhabditis elegans/chemistry , FMRFamide/pharmacology , Genitalia, Female/drug effects , Animals , Ascaris suum/physiology , Caenorhabditis elegans/genetics , Dose-Response Relationship, Drug , FMRFamide/chemistry , FMRFamide/genetics , Female , Genes, Helminth , Genitalia, Female/physiology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Swine/parasitology
12.
Int J Parasitol ; 26(8-9): 927-36, 1996.
Article in English | MEDLINE | ID: mdl-8923140

ABSTRACT

The application of rational (mechanism-based) approaches to anthelmintic discovery requires information about target proteins which are pharmacologically distinguishable from their vertebrate homologs. In helminths, several such targets (e.g., beta-tubulin, ATP-generating enzymes, cholinergic receptors, CI- channels) have been characterized only after the discovery, through empirical screening, of compounds that interfere with their function. From the perspective of anthelmintic discovery, the utility of these targets is diminishing due to the emergence of drug-resistant strains of parasites. This has motivated the search for compounds with novel modes-of-action. Recent basic research in helminth physiology and biochemistry has identified several potential targets for rational anthelmintic discovery, including receptors for FMRFamide-related peptides (FaRPs). To date, over 20 different nematode FaRPs have been identified and these peptides, which are broadly distributed in helminths, have been localized to all of the major neuronal subtypes in nematodes. The FaRPs that have been examined have been found profoundly to affect somatic muscle function in gastrointestinal nematodes. In this respect, complex inhibitory and excitatory actions have been identified for a number of these peptides. Although the transduction pathways for any of these peptides remain to be elucidated, the available evidence indicates that nematode FaRPs have numerous mechanisms of action. The employment of nematode neuropeptide receptors in mechanism-based screens has immense potential in the identification of novel anthelmintics.


Subject(s)
Invertebrate Hormones/analysis , Nematoda/chemistry , Neuropeptides/analysis , Amino Acid Sequence , Animals , FMRFamide , Invertebrate Hormones/chemistry , Invertebrate Hormones/physiology , Neuropeptides/chemistry , Neuropeptides/physiology
13.
Int J Parasitol ; 33(2): 199-208, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12633657

ABSTRACT

KHEYLRF-NH(2) (AF2) is a FMRFamide-related peptide (FaRP) present in parasitic and free-living nematodes. At concentrations as low as 10 pM, AF2 induces a biphasic tension response, consisting of a transient relaxation followed by profound excitation, in neuromuscular strips prepared from Ascaris suum. In the present study, the effects of AF2 on cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP) and inositol-1,4,5-triphosphate (IP(3)) levels were measured following muscle tension recordings from 2 cm neuromuscular strips prepared from adult A. suum. AF2 induced a concentration- and time-dependent increase in cAMP, beginning at 1 nM; cAMP levels increased by 84-fold following 1 h exposure to 1 microM AF2. cGMP and IP(3) levels were unaffected by AF2 at concentrations

Subject(s)
Ascaris suum/metabolism , Cyclic AMP/metabolism , Neuromuscular Junction/metabolism , Neuropeptides/pharmacology , Animals , Ascaris suum/drug effects , Cyclic GMP/metabolism , Female , In Vitro Techniques , Inositol 1,4,5-Trisphosphate/metabolism , Muscle Contraction/drug effects , Neuromuscular Junction/drug effects , Stimulation, Chemical
14.
Ann N Y Acad Sci ; 897: 212-27, 1999.
Article in English | MEDLINE | ID: mdl-10676450

ABSTRACT

Nervous systems of helminths are highly peptidergic. Species in the phylum Nematoda (roundworms) possess at least 50 FMRFamide-related peptides (FaRPs), with more yet to be identified. To date, few non-FaRP neuropeptides have been identified in these organisms, though evidence suggests that other families are present. FaRPergic systems have important functions in nematode neuromuscular control. In contrast, species in the phylum Platyhelminthes (flatworms) apparently utilize fewer FaRPs than do nematodes; those species examined possess one or two FaRPs. Other neuropeptides, such as neuropeptide F (NPF), play key roles in flatworm physiology. Although progress has been made in the characterization of FaRP pharmacology in helminths, much remains to be learned. Most studies on nematodes have been done with Ascaris suum because of its large size. However, thanks to the Caenorhabditis elegans genome project, we know most about the FaRP complement of this free-living animal. That essentially all C. elegans FaRPs are active on at least one A. suum neuromuscular system argues for conservation of ligand-receptor recognition features among the Nematoda. Structure-activity studies on nematode FaRPs have revealed that structure-activity relationship (SAR) "rules" differ considerably among the FaRPs. Second messenger studies, along with experiments on ionic dependence and anatomical requirements for activity, reveal that FaRPs act through many different mechanisms. Platyhelminth FaRPs are myoexcitatory, and no evidence exists of multiple FaRP receptors in flatworms. Interestingly, there are examples of cross-phylum activity, with some nematode FaRPs being active on flatworm muscle. The extent to which other invertebrate FaRPs show cross-phylum activity remains to be determined. How FaRPergic nerves contribute to the control of behavior in helminths, and are integrated with non-neuropeptidergic systems, also remains to be elucidated.


Subject(s)
FMRFamide/analogs & derivatives , FMRFamide/pharmacology , Helminths/physiology , Amino Acid Sequence , Animals , FMRFamide/physiology , Helminths/drug effects , Nematoda/drug effects , Nematoda/physiology , Signal Transduction
15.
Peptides ; 17(8): 1267-77, 1996.
Article in English | MEDLINE | ID: mdl-8971918

ABSTRACT

PF4 has previously been shown to have potent inhibitory effects on myoactivity of somatic muscle strips from the nematode. Ascaris suum. This study examined the bioactivity and metabolic stability of position 2- and position 5-modified analogues of PF4. Although the analogues [Leu5]PF4,[Ala2]PF4, [Gly2]PF4, [Ala2,Leu5]PF4, and [Gly2,Leu5]PF4 all had qualitatively similar inhibitory effects on A. suum somatic muscle strips, their effects were quantitatively distinguishable and had the order of potency: PF4 = [Leu5]PF4 > > [Ala2]PF4 = [Ala2,Leu5]PF4 > > [Gly2]PF4 = [Gly2,Leu5]PF4, Leu5 for Ile5 substitutions in PF4 did not alter the activity of this peptide: however, Gly2/Ala2 for Pro2 substitutions reduced, but did not abolish, peptide activity. Peptide stability studies revealed that [Gly2]PF4(2-7) and -(3-7) and [Ala2]PF4(2-7), -(3-7), and -(4-7) fragments were generated following exposure to A. suum somatic muscle strips. However, the parent peptide (PF4) was not metabolized and appeared to be resistant to the sequential cleavages of native aminopeptidases. Observed analogue metabolism appeared to be due to the activity of released aminopeptidases as identical fragments were generated by incubation in medium that had been exposed to somatic muscle strips and from which the strips had been removed prior to peptide addition. It was found that the muscle stretching and bath mixing characteristics of the tension assay led to more effective release of soluble enzymes from muscle strips and thus greater peptide degradation. These studies reveal that Pro2 in PF4 is not essential for the biological activity of this peptide; however, it does render the peptide resistant to the actions of native nematode aminopeptidases.


Subject(s)
Nematoda/physiology , Oligopeptides/chemistry , Oligopeptides/physiology , Amino Acid Sequence , Animals , Ascaris suum/drug effects , Ascaris suum/physiology , Drug Stability , In Vitro Techniques , Molecular Structure , Muscle Relaxation/drug effects , Oligopeptides/pharmacology , Proline/chemistry , Structure-Activity Relationship
16.
Regul Pept ; 47(2): 179-85, 1993 Sep 03.
Article in English | MEDLINE | ID: mdl-8234904

ABSTRACT

Pancreatic polypeptide (PP) has been isolated from extracts of the pancreas of the European hedgehog (Erinaceous europaeus) which is a representative of the order Insectivora, deemed to be the most primitive group of placental mammals. Pancreatic tissues were extracted in acidified ethanol and the peptide was purified chromatographically using a PP C-terminal hexapeptide amide specific radioimmunoassay to monitor purification. Two major PP-immunoreactive peptides were baseline-resolved following the final analytical reverse phase HPLC fractionation. Each was separately subjected to plasma desorption mass spectroscopy (PDMS) and gas-phase sequencing. The molecular masses of each peptide were similar: (I) 4237.6 +/- 4 Da and (II) 4238.2 +/- 4 Da. The full primary structures of each peptide were deduced and these were identical: VPLEPVYPGDNATPEQMAHYAAELRRYINMLTRPRY. The peptides were deemed to be amidated due to their full molar cross-reactivity with the amide-requiring PP antiserum employed in radioimmunoassay. The molecular mass (4233.8 Da) calculated from the sequence was in close agreement with PDMS estimates and the reason for the different retention times of each peptide is unknown at present. Hedgehog PP exhibits only 2 unique amino acid substitutions, at positions 1 (Val) and 19 (His), when compared with other mammalian analogues.


Subject(s)
Hedgehogs/metabolism , Pancreatic Polypeptide/metabolism , Amino Acid Sequence , Animals , Biological Evolution , Immunoradiometric Assay , Molecular Sequence Data , Molecular Weight , Pancreas/chemistry , Pancreatic Polypeptide/chemistry , Pancreatic Polypeptide/isolation & purification , Sequence Homology, Amino Acid
17.
Regul Pept ; 52(3): 159-64, 1994 Aug 04.
Article in English | MEDLINE | ID: mdl-7800847

ABSTRACT

Chicken (avian) pancreatic polypeptide was the first member of the pancreatic polypeptide (PP)/neuropeptide Y (NPY) superfamily to be discovered and structurally-characterised. In this 36 amino acid residue, C-terminally amidated peptide, residues 22 and 23 were identified as Asp and Asn, respectively. However, sequencing of chicken PP using modem automated gas-phase sequencing technology has revealed that the original primary structure is incorrect in that residue 22 is Asn and that residue 23 is Asp. After digestion of chicken PP with endoproteinase Asp-N, fragments of chicken PP corresponding in molecular mass to residues 16-22 and 23-36, were unequivocally identified. The corrected primary structure of chicken PP is therefore: Gly-Pro-Ser-Gln-Pro-Thr-Tyr-Pro-Gly-Asp-Asp- Ala-Pro-Val-Glu-Asp-Leu-Ile-Arg- Phe-Tyr-Asn-Asp-Leu-Gln-Gln-Tyr-Leu-Asn-Val-Val-Thr-Arg-His-Arg-Tyr-NH2.


Subject(s)
Chickens/metabolism , Pancreatic Polypeptide/chemistry , Amino Acid Sequence , Animals , Endopeptidases , Metalloendopeptidases , Molecular Sequence Data , Pancreatic Polypeptide/isolation & purification
18.
Regul Pept ; 47(2): 187-94, 1993 Sep 03.
Article in English | MEDLINE | ID: mdl-8234905

ABSTRACT

Chicken pancreatic polypeptide is the prototype of the neuropeptide Y (NPY)/PP superfamily of regulatory peptides. This polypeptide was appended the descriptive term avian, despite the presence of some 8600 extant species of bird. Additional primary structures from other avian species, including turkey, goose and ostrich, would suggest that the primary structure of this polypeptide has been highly-conserved during avian evolution. Avian pancreatic polypeptides structurally-characterised to date have distinctive primary structural features unique to this vertebrate group including an N-terminal glycyl residue and a histidyl residue at position 34. The crow family, Corvidae, is representative of the order Passeriformes, generally regarded as the most evolutionarily recent and diverse avian taxon. Pancreatic polypeptide has been isolated from pancreatic tissues from five representative Eurasian species (the magpie, Pica pica; the jay, Garrulus glandarius; the hooded crow, Corvus corone; the rook, Corvus frugilegus; the jackdaw, Corvus monedula) and subjected to structural analyses. Mass spectroscopy estimated the molecular mass of each peptide as 4166 +/- 2 Da. The entire primary structures of 36 amino acid residue peptides were established in single gas-phase sequencing runs. The primary structures of pancreatic polypeptides from all species investigated were identical: APAQPAYPGDDAPVEDLLRFYNDLQQYLNVVTRPRY. The peptides were deemed to be amidated due to their full molar cross-reactivity with the amide-requiring PP antiserum employed. The molecular mass (4165.6 Da), calculated from the sequences, was in close agreement with mass spectroscopy estimates. The presence of an N-terminal alanyl residue and a prolyl residue at position 34 differentiates crow PP from counterparts in other avian species.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Birds/metabolism , Pancreatic Polypeptide/chemistry , Pancreatic Polypeptide/isolation & purification , Amino Acid Sequence , Animals , Molecular Sequence Data , Molecular Weight , Pancreas/chemistry , Sequence Homology, Amino Acid
19.
Hear Res ; 11(3): 385-94, 1983 Sep.
Article in English | MEDLINE | ID: mdl-6226636

ABSTRACT

Blood flow to the inner ear was studied with a laser Doppler system in the acute guinea pig. Flow was measured through the lateral wall of the basal turn. Changes in simultaneous measures of cochlear and skin flow with rebreathing, epinephrine, phentolamine and terminal bleeding were studied. Cochlear blood flow followed skin blood flow in most cases; where it did not, the change was in an expected direction. The laser Doppler flowmeter appears to provide a direct, dynamic and linear measure of inner ear blood flow.


Subject(s)
Cochlea/blood supply , Rheology , Ultrasonography , Animals , Epinephrine/pharmacology , Guinea Pigs , Phentolamine/pharmacology , Regional Blood Flow/drug effects , Skin/blood supply
20.
Invert Neurosci ; 1(3): 255-65, 1995 Dec.
Article in English | MEDLINE | ID: mdl-9372147

ABSTRACT

A large number of FMRFamide-related peptides (FaRPs) are found in nematodes, and some of these are known to influence tension and contractility of neuromuscular strips isolated from Ascaris suum body wall. Relaxation of these strips has been noted with five nematode FaRPs. The inhibitory actions of SDPNFLRFamide (PF1) and SADPNFLRFamide (PF2) appear to be mediated by nitric oxide, as previously demonstrated with inhibitors of nitric oxide synthase (NOS). This present study showed that the effects of PF1 were also depended on external Ca++ and were reduced by the Ca(++)-channel blocker verapamil, observations consistent with the finding that nematode NOS is Ca(++)-dependent. KSAYMRFamide (PF3), KNIRFamide (PF4) and KNAFIRFamide (an alanine substituted analog of KNEFIRFamide, AF1, termed A3AF1) also relaxed A. suum muscle strips, but these responses were not affected by NOS inhibitors. PF3 inhibited the activity of strips prepared from the dorsal side of the worm, but contracted ventral strips. Both effects were dependent on the presence of ventral/dorsal nerve cords (unlike PF1/PF2) and were attenuated in medium which contained high K+ or low Ca++. PF4-induced muscle relaxation and hyperpolarization were independent of nerve cords, but were reversed in Cl-free medium, unlike PF1 or PF3. The PF4 effect physiologically desensitized muscle strips to subsequent treatment with PF4 and/or GABA. However, PF4 and GABA were not synergistic in this preparation. The effects of GABA, but not PF4, were reduced in muscle strips treated with the GABA antagonist, NCS 281-93. Following PF4 (or GABA) relaxation, subsequent treatment with higher doses of PF4 caused muscle strip contraction. A3AF1 was found to relax muscle strips and hyperpolarize muscle cells independently of the ventral and dorsal nerve cords, K+, Ca++, and Cl-, and mimicked the inhibitory phase associated with the exposure of these strips to AF1. On the basis of anatomical and ionic dependence, these data have delineated at least four distinct inhibitory activities attributable to nematode FaRPs. Clearly, a remarkably complex set of inhibitory mechanisms operate in the nematode neuromuscular system.


Subject(s)
Ascaris suum/physiology , FMRFamide/pharmacology , Muscles/drug effects , Peptide Fragments/physiology , Animals , Female , In Vitro Techniques , Isotonic Solutions/pharmacology , Membrane Potentials/drug effects , Muscle Contraction/physiology , Muscles/physiology , Oligopeptides/pharmacology , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL