Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Nano Lett ; 24(14): 4091-4100, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38489158

ABSTRACT

Catalytic cancer therapy targets cancer cells by exploiting the specific characteristics of the tumor microenvironment (TME). TME-based catalytic strategies rely on the use of molecules already present in the TME. Amino groups seem to be a suitable target, given the abundance of proteins and peptides in biological environments. Here we show that catalytic CuFe2O4 nanoparticles are able to foster transaminations with different amino acids and pyruvate, another key molecule present in the TME. We observed a significant in cellulo decrease in glutamine and alanine levels up to 48 h after treatment. In addition, we found that di- and tripeptides also undergo catalytic transamination, thereby extending the range of the effects to other molecules such as glutathione disulfide (GSSG). Mechanistic calculations for GSSG transamination revealed the formation of an imine between the oxo group of pyruvate and the free -NH2 group of GSSG. Our results highlight transamination as alternative to the existing toolbox of catalytic therapies.


Subject(s)
Amino Acids , Neoplasms , Amino Acids/chemistry , Glutathione Disulfide , Tumor Microenvironment , Amines , Pyruvic Acid , Catalysis
2.
Int J Mol Sci ; 25(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396662

ABSTRACT

Deoxyribonucleic acid (DNA) represents the main reservoir of genetic information in the cells, which is why it is protected in the nucleus. Entry into the nucleus is, in general, difficult, as the nuclear membrane is a selective barrier to molecules longer than 40 kDa. However, in some cases, the size of certain nanoparticles (NPs) allows their internalization into the nucleus, thus causing a direct effect on the DNA structure. NPs can also induce indirect effects on DNA through reactive oxygen species (ROS) generation. In this context, nanomaterials are emerging as a disruptive tool for the development of novel therapies in a broad range of biomedical fields; although their effect on cell viability is commonly studied, further interactions with DNA or indirect alterations triggered by the internalization of these materials are not always clarified, since the small size of these materials makes them perfectly suitable for interaction with subcellular structures, such as the nucleus. In this context, and using as a reference the predicted interactions presented in a computational model, we describe and discuss the observed direct and indirect effects of the implicated nanomaterials on DNA.


Subject(s)
Nanoparticles , Nanostructures , Nucleic Acids , Reactive Oxygen Species , DNA
3.
J Nanobiotechnology ; 20(1): 473, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36335359

ABSTRACT

BACKGROUND: Platinum nanoparticles have been demonstrated to have excellent anticancer properties. However, because of the lack of specificity they must be delivered to the tumor in amounts sufficient to reach the desired therapeutic objectives. Interestingly, exosomes are considered as excellent natural selective delivery nanotools, but until know their targeting properties have not being combined with the anticancer properties of platinum nanoparticles. RESULTS: In this work we combine the targeting capabilities of exosomes and the antitumoral properties of ultrasmall (< 2 nm) platinum nanoparticles as a novel, low toxicity alternative to the use of cisplatin. A mild methodology based on the room temperature CO-assisted in situ reduction of Pt2+ precursor was employed to preserve the integrity of exosomes, while generating ultrasmall therapeutic PtNPs directly inside the vesicles. The resulting PtNPs-loaded exosomes constitute a novel hybrid bioartificial system that was readily internalized by the target cells inducing antiproliferative response, as shown by flow cytometry and microscopy experiments in vitro. In vivo Pt-Exos showed antitumoral properties similar to that of cisplatin but with a strongly reduced or in some cases no toxic effect, highlighting the advantages of this approach and its potential for translation to the clinic. CONCLUSIONS: In this study, a nanoscale vector based on ultrasmall PtNPs and exosomes has been created exhibiting antitumoral properties comparable or higher to those of the FDA approved cisplatin. The preferential uptake of PtNPs mediated by exosomal transfer between certain cell types has been exploited to create a selective antitumoral novel bioartificial system. We have demonstrated their anticancer properties both in vitro and in vivo comparing the results obtained with the administration of equivalent amounts of cisplatin, and showing a spectacular reduction of toxicity.


Subject(s)
Exosomes , Metal Nanoparticles , Nanoparticles , Neoplasms , Humans , Cisplatin/pharmacology , Platinum , Cell Line, Tumor
4.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163074

ABSTRACT

The question of whether exosome lipids can be considered as potential cancer biomarkers faces our current limited knowledge of their composition. This is due to the difficulty in isolating pure exosomes, the variability of the biological sources from which they are extracted, and the uncertainty of the methods for lipid characterization. Here, we present a procedure to isolate exosomes and obtain a deep, repeatable, and rapid phospholipid (PL) composition of their lipid extracts, from embryonic murine fibroblasts (NIH-3T3 cell line) and none (B16-F1) and high (B16-F10) metastatic murine skin melanoma cells. The analytical method is based on High Performance Thin-Layer Chromatography with Ultraviolet and fluorescence densitometry and coupled to Electrospray (ESI)-tandem Mass Spectrometry (MS). Under the conditions described in this work, separation and determination of PL classes, (sphingomyelins, SM; phosphatidylcholines, PC; phosphatidylserines, PS; and phosphatidylethanolamines, PE) were achieved, expressed as µg PL/100 µg exosome protein, obtained by bicinchoninic acid assay (BCA). A detailed structural characterization of molecular species of each PL class was performed by simultaneous positive and negative ESI-MS and MS/MS directly from the chromatographic plate, thanks to an elution-based interface.


Subject(s)
Chromatography, Thin Layer/methods , Exosomes/metabolism , Fibroblasts/metabolism , Melanoma, Experimental/pathology , Phospholipids/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Melanoma, Experimental/metabolism , Mice , NIH 3T3 Cells , Phospholipids/analysis
5.
Int J Mol Sci ; 23(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36012152

ABSTRACT

Oncolytic adenoviruses (OAd) can be employed to efficiently eliminate cancer cells through multiple mechanisms of action including cell lysis and immune activation. Our OAds, AdΔΔ and Ad-3∆-A20T, selectively infect, replicate in, and kill adenocarcinoma cells with the added benefit of re-sensitising drug-resistant cells in preclinical models. Further modifications are required to enable systemic delivery in patients due to the rapid hepatic elimination and neutralisation by blood factors and antibodies. Here, we show data that support the use of coating OAds with gold nanoparticles (AuNPs) as a possible new method of virus modification to help augment tumour uptake. The pre-incubation of cationic AuNPs with AdΔΔ, Ad-3∆-A20T and wild type adenovirus (Ad5wt) was performed prior to infection of prostate/pancreatic cancer cell lines (22Rv, PC3, Panc04.03, PT45) and a pancreatic stellate cell line (PS1). Levels of viral infection, replication and cell viability were quantified 24-72 h post-infection in the presence and absence of AuNPs. Viral spread was assessed in organotypic cultures. The presence of AuNPs significantly increased the uptake of Ad∆∆, Ad-3∆-A20T and Ad5wt in all the cell lines tested (ranging from 1.5-fold to 40-fold), compared to virus alone, with the greatest uptake observed in PS1, a usually adenovirus-resistant cell line. Pre-coating the AdΔΔ and Ad-3∆-A20T with AuNPs also increased viral replication, leading to enhanced cell killing, with maximal effect in the most virus-insensitive cells (from 1.4-fold to 5-fold). To conclude, the electrostatic association of virus with cationic agents provides a new avenue to increase the dose in tumour lesions and potentially protect the virus from detrimental blood factor binding. Such an approach warrants further investigation for clinical translation.


Subject(s)
Metal Nanoparticles , Oncolytic Virotherapy , Oncolytic Viruses , Pancreatic Neoplasms , Virus Diseases , Adenoviridae/physiology , Cell Line, Tumor , Gold/metabolism , Humans , Male , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Pancreatic Neoplasms/pathology , Prostate/pathology , Virus Replication , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
6.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35163605

ABSTRACT

Due to their ease of isolation and their properties, mesenchymal stem cells (MSCs) have been widely investigated. MSCs have been proved capable of migration towards areas of inflammation, including tumors. Therefore, they have been suggested as vectors to carry therapies, specifically to neoplasias. As most of the individuals joining clinical trials that use MSCs for cancer and other pathologies are carefully recruited and do not suffer from other diseases, here we decided to study the safety and application of iv-injected MSCs in animals simultaneously induced with different inflammatory pathologies (diabetes, wound healing and tumors). We studied this by in vitro and in vivo approaches using different gene reporters (GFP, hNIS, and f-Luc) and non-invasive techniques (PET, BLI, or fluorescence). Our results found that MSCs reached different organs depending on the previously induced pathology. Moreover, we evaluated the property of MSCs to target tumors as vectors to deliver adenoviruses, including the interaction between tumor microenvironment and MSCs on their arrival. Mechanisms such as transdifferentiation, MSC fusion with cells, or paracrine processes after MSCs homing were studied, increasing the knowledge and safety of this new therapy for cancer.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Neoplasms , Tumor Microenvironment , Animals , Female , Heterografts , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/metabolism , Neoplasms/therapy
7.
Nanomedicine ; 35: 102391, 2021 07.
Article in English | MEDLINE | ID: mdl-33794371

ABSTRACT

Uveal melanoma (UM) is an intraocular tumor which is almost lethal at the metastatic stage due to the lack of effective treatments. In this regard, we have developed an albumin-based nanostructure (ABN) containing AZD8055 (ABN-AZD), which is a potent mTOR kinase inhibitor, for its efficient delivery to the tumors. The drug has been conjugated to ABN using tailored linkers that have a disulfide moiety, allowing its release selectively and effectively in the presence of an elevated concentration of glutathione, such as inside the tumoral cells. Our therapeutic approach induced significant cellular toxicity in uveal melanoma cells, but not in non-tumoral keratinocytes, highlighting the excellent selectivity of the system. In addition, these nanostructures showed excellent activity in vivo, decreasing the tumor surface compared to the free AZD8055 in mice models. Remarkably, the results obtained were achieved employing a dose 23 times lower than those used in previous reports.


Subject(s)
Melanoma/drug therapy , Morpholines , Nanostructures , Serum Albumin, Human , Uveal Neoplasms/drug therapy , Animals , Feeder Cells , Humans , Melanoma/enzymology , Mice , Mice, Nude , Morpholines/chemistry , Morpholines/pharmacology , Nanostructures/chemistry , Nanostructures/therapeutic use , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Uveal Neoplasms/enzymology , Xenograft Model Antitumor Assays
8.
Int J Mol Sci ; 22(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069278

ABSTRACT

Clinical outcomes of conventional drug combinations are not ideal due to high toxicity to healthy tissues. Cisplatin (CDDP) is the standard component for many cancer treatments, yet its principal dose-limiting side effect is nephrotoxicity. Thus, CDDP is commonly used in combination with other drugs, such as the autophagy inhibitor chloroquine (CQ), to enhance tumor cell killing efficacy and prevent the development of chemoresistance. In addition, nanocarrier-based drug delivery systems can overcome chemotherapy limitations, decreasing side effects and increasing tumor accumulation. The aim of this study was to evaluate the toxicity of CQ and CDDP against tumor and non-tumor cells when used in a combined treatment. For this purpose, two types of micelles based on Pluronic® F127 hybrid dendritic-linear-dendritic block copolymers (HDLDBCs) modified with polyester or poly(esteramide) dendrons derived from 2,2'-bis(hydroxymethyl)propionic acid (HDLDBC-bMPA) or 2,2'-bis(glycyloxymethyl)propionic acid (HDLDBC-bGMPA) were explored as delivery nanocarriers. Our results indicated that the combined treatment with HDLDBC-bMPA(CQ) or HDLDBC-bGMPA(CQ) and CDDP increased cytotoxicity in tumor cells compared to the single treatment with CDDP. Encapsulations demonstrated less short-term cytotoxicity individually or when used in combination compared to the free drugs. However, and more importantly, a low degree of cytotoxicity against non-tumor cells was maintained, even when drugs were given simultaneously.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Carriers/chemistry , Micelles , Polymers/chemistry , A549 Cells , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Chloroquine/administration & dosage , Chloroquine/pharmacokinetics , Cisplatin/administration & dosage , Cisplatin/pharmacokinetics , Drug Carriers/pharmacokinetics , Drug Delivery Systems/methods , Drug Liberation , Fibroblasts/drug effects , HeLa Cells , Humans , Poloxamer/chemistry , Polymers/chemical synthesis
9.
J Nanobiotechnology ; 18(1): 150, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33092584

ABSTRACT

BACKGROUND: Exosomes are endocytic-extracellular vesicles with a diameter around 100 nm that play an essential role on the communication between cells. In fact, they have been proposed as candidates for the diagnosis and the monitoring of different pathologies (such as Parkinson, Alzheimer, diabetes, cardiac damage, infection diseases or cancer). RESULTS: In this study, magnetic nanoparticles (Fe3O4NPs) were successfully functionalized with an exosome-binding antibody (anti-CD9) to mediate the magnetic capture in a microdevice. This was carried out under flow in a 1.6 mm (outer diameter) microchannel whose wall was in contact with a set of NdFeB permanent magnets, giving a high magnetic field across the channel diameter that allowed exosome separation with a high yield. To show the usefulness of the method, the direct capture of exosomes from whole blood of patients with pancreatic cancer (PC) was performed, as a proof of concept. The captured exosomes were then subjected to analysis of CA19-9, a protein often used to monitor PC patients. CONCLUSIONS: Here, we describe a new microfluidic device and the procedure for the isolation of exosomes from whole blood, without any need of previous isolation steps, thereby facilitating translation to the clinic. The results show that, for the cases analyzed, the evaluation of CA19-9 in exosomes was highly sensitive, compared to serum samples.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/blood , Antigens, Tumor-Associated, Carbohydrate/isolation & purification , Blood Chemical Analysis/methods , Exosomes/chemistry , Pancreatic Neoplasms/diagnosis , Antibodies/chemistry , Antibodies/metabolism , Boron/chemistry , Electromagnetic Fields , Humans , Iron/chemistry , Lab-On-A-Chip Devices , Magnetite Nanoparticles/chemistry , Neodymium/chemistry , Surface Properties
10.
J Nanobiotechnology ; 17(1): 16, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30683120

ABSTRACT

BACKGROUND: Exosomes are considered key elements for communication between cells, but very little is known about the mechanisms and selectivity of the transference processes involving exosomes released from different cells. RESULTS: In this study we have investigated the transfer of hollow gold nanoparticles (HGNs) between different cells when these HGNs were loaded within exosomes secreted by human placental mesenchymal stem cells (MSCs). These HGNs were successfully incorporated in the MSCs exosome biogenesis pathway and released as HGNs-loaded exosomes. Time-lapse microscopy and atomic emission spectroscopy allowed us to demonstrate the selective transfer of the secreted exosomes only to the cell type of origin when studying different cell types including cancer, metastatic, stem or immunological cells. CONCLUSIONS: In this study we demonstrate the selectivity of in vitro exosomal transfer between certain cell types and how this phenomenon can be exploited to develop new specific vectors for advanced therapies. Specifically, we show how this preferential uptake can be leveraged to selectively induce cell death by light-induced hyperthermia only in cells of the same type as those producing the corresponding loaded exosomes. We describe how the exosomes are preferentially transferred to some cell types but not to others, thus providing a better understanding to design selective therapies for different diseases.


Subject(s)
Exosomes/metabolism , Metal Nanoparticles , Cell Communication , Cells, Cultured , Coculture Techniques , Endocytosis , Exosomes/chemistry , Gold/chemistry , Gold/metabolism , Hot Temperature , Humans , Infrared Rays , Mesenchymal Stem Cells/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/radiation effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure
11.
J Gene Med ; 19(6-7)2017 Jun.
Article in English | MEDLINE | ID: mdl-28632911

ABSTRACT

BACKGROUND: In the present study, we investigated the ability of polyethylene glycol (PEG) functionalized gold nanoparticles to function as nonviral vectors in the transfection of different cell lines, comparing them with commercial lipoplexes. METHODS: Positively-charged gold nanoparticles were synthesized using polyethylenimine (PEI) as a reducing and stabilizer agent and its cytotoxicity was reduced by its functionalization with PEG. We bound the nanoparticles to three plasmids with different sizes (4-40 kpb). Vector internalization was evaluated by confocal and electronic microscopy. Its transfection efficacy was studied by fluorescence microscopy and flow cytometry. The application of the resulting vector in gene therapy was evaluated indirectly using ganciclovir in HeLa cells transfected to express the herpes virus thymidine kinase. RESULTS: An appropriate ratio between the nitrogen from the PEI and the phosphorous from the phosphate groups of the DNA, together with a reduced size and an elevated electrokinetic potential, are responsible for an increased nanoparticle internalization and enhanced protein expression when carrying plasmids of up to 40 kbp (plasmid size close to the limit of the DNA-carrying capacity of viral vectors). Compared to a commercial transfection reagent, an equal or even higher expression of reporter genes (on HeLa and Hek293t) and a suicide effect on HeLa cells transfected with the herpes virus thymidine kinase gene were observed when using this novel nanoparticulated vector. CONCLUSIONS: Nonviral vectors based on gold nanoparticles covalently coupled with PEG and PEI can be used as efficient transfection reagents showing expression levels that are the same or greater than those obtained with commercially available lipoplexes.


Subject(s)
Genetic Vectors/chemistry , Metal Nanoparticles , Transfection/methods , Gene Transfer Techniques , Genetic Vectors/chemical synthesis , Gold , HeLa Cells , Humans , Polyethylene Glycols , Polyethyleneimine
12.
Bioconjug Chem ; 28(4): 1135-1150, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28256825

ABSTRACT

In the search for effective vehicles to carry genetic material into cells, we present here new pseudodendrimers that consist of a hyperbranched polyester core surrounded by amino-terminated 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) dendrons. The pseudodendrimers are readily synthesized from commercial hyperbranched bis-MPA polyesters of the second, third, and fourth generations and third-generation bis-MPA dendrons, bearing eight peripheral glycine moieties, coupled by the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). This approach provides globular macromolecular structures bearing 128, 256, and 512 terminal amino groups, and these can complex pDNA. The toxicity of the three pseudodendrimers was studied on two cell lines, mesenchymal stem cells, and HeLa, and it was demonstrated that these compounds do not affect negatively cell viability up to 72 h. The complexation with DNA was investigated in terms of N-to-P ratio and dendriplex stability. The three generations were found to promote internalizing of pDNA into mesenchymal stem cells (MSCs), and their transfection capacity was compared with two nonviral commercial transfection agents, Lipofectamine and TransIT-X2. The highest generations were able to transfect these cells at levels comparable to both commercial reagents.


Subject(s)
Dendrimers/chemistry , Hydroxy Acids/pharmacology , Mesenchymal Stem Cells/metabolism , Propionates/pharmacology , Transfection/methods , Cell Line , Cell Survival/drug effects , Humans , Plasmids
13.
Cells ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667306

ABSTRACT

Several studies have reported the successful use of bio-orthogonal catalyst nanoparticles (NPs) for cancer therapy. However, the delivery of the catalysts to the target tissues in vivo remains an unsolved challenge. The combination of catalytic NPs with extracellular vesicles (EVs) has been proposed as a promising approach to improve the delivery of therapeutic nanomaterials to the desired organs. In this study, we have developed a nanoscale bio-hybrid vector using a CO-mediated reduction at low temperature to generate ultrathin catalytic Pd nanosheets (PdNSs) as catalysts directly inside cancer-derived EVs. We have also compared their biodistribution with that of PEGylated PdNSs delivered by the EPR effect. Our results indicate that the accumulation of PdNSs in the tumour tissue was significantly higher when they were administered within the EVs compared to the PEGylated PdNSs. Conversely, the amount of Pd found in non-target organs (i.e., liver) was lowered. Once the Pd-based catalytic EVs were accumulated in the tumours, they enabled the activation of a paclitaxel prodrug demonstrating their ability to carry out bio-orthogonal uncaging chemistries in vivo for cancer therapy.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/metabolism , Humans , Animals , Catalysis , Mice , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Palladium/chemistry , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Cell Line, Tumor , Tissue Distribution , Polyethylene Glycols/chemistry , Nanoparticles/chemistry , Prodrugs , Mice, Nude
14.
ACS Appl Mater Interfaces ; 16(23): 29844-29855, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38829261

ABSTRACT

Copper plays critical roles as a metal active site cofactor and metalloallosteric signal for enzymes involved in cell proliferation and metabolism, making it an attractive target for cancer therapy. In this study, we investigated the efficacy of polydopamine nanoparticles (PDA NPs), classically applied for metal removal from water, as a therapeutic strategy for depleting intracellular labile copper pools in triple-negative breast cancer models through the metal-chelating groups present on the PDA surface. By using the activity-based sensing probe FCP-1, we could track the PDA-induced labile copper depletion while leaving total copper levels unchanged and link it to the selective MDA-MB-231 cell death. Further mechanistic investigations revealed that PDA NPs increased reactive oxygen species (ROS) levels, potentially through the inactivation of superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Additionally, PDA NPs were found to interact with the mitochondrial membrane, resulting in an increase in the mitochondrial membrane potential, which may contribute to enhanced ROS production. We employed an in vivo tumor model to validate the therapeutic efficacy of PDA NPs. Remarkably, in the absence of any additional treatment, the presence of PDA NPs alone led to a significant reduction in tumor volume by a factor of 1.66 after 22 days of tumor growth. Our findings highlight the potential of PDA NPs as a promising therapeutic approach for selectively targeting cancer by modulating copper levels and inducing oxidative stress, leading to tumor growth inhibition as shown in these triple-negative breast cancer models.


Subject(s)
Copper , Indoles , Nanoparticles , Polymers , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Copper/chemistry , Copper/pharmacology , Polymers/chemistry , Polymers/pharmacology , Indoles/chemistry , Indoles/pharmacology , Humans , Animals , Mice , Nanoparticles/chemistry , Female , Reactive Oxygen Species/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Oxidation-Reduction , Nanomedicine , Cell Proliferation/drug effects , Homeostasis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Superoxide Dismutase-1/metabolism
15.
BMC Med ; 11: 139, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23710709

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) have been promoted as an attractive option to use as cellular delivery vehicles to carry anti-tumor agents, owing to their ability to home into tumor sites and secrete cytokines. Multiple isolated populations have been described as MSCs, but despite extensive in vitro characterization, little is known about their in vivo behavior.The aim of this study was to investigate the efficacy and efficiency of different MSC lineages derived from five different sources (bone marrow, adipose tissue, epithelial endometrium, stroma endometrium, and amniotic membrane), in order to assess their adequacy for cell-based anti-tumor therapies. Our study shows the crucial importance of understanding the interaction between MSCs and tumor cells, and provides both information and a methodological approach, which could be used to develop safer and more accurate targeted therapeutic applications. METHODS: We first measured the in vivo migration capacity and effect on tumor growth of the different MSCs using two imaging techniques: (i) single-photon emission computed tomography combined with computed tomography (SPECT-CT), using the human sodium iodine symporter gene (hNIS) and (ii) magnetic resonance imaging using superparamagnetic iron oxide. We then sought correlations between these parameters and expression of pluripotency-related or migration-related genes. RESULTS: Our results show that migration of human bone marrow-derived MSCs was significantly reduced and slower than that obtained with the other MSCs assayed and also with human induced pluripotent stem cells (hiPSCs). The qPCR data clearly show that MSCs and hiPSCs exert a very different pluripotency pattern, which correlates with the differences observed in their engraftment capacity and with their effects on tumor growth. CONCLUSION: This study reveals differences in MSC recruitment/migration toward the tumor site and the corresponding effects on tumor growth. Three observations stand out: 1) tracking of the stem cell is essential to check the safety and efficacy of cell therapies; 2) the MSC lineage to be used in the cell therapy needs to be carefully chosen to balance efficacy and safety for a particular tumor type; and 3) different pluripotency and mobility patterns can be linked to the engraftment capacity of the MSCs, and should be checked as part of the clinical characterization of the lineage.


Subject(s)
Cell Movement/physiology , Induced Pluripotent Stem Cells/diagnostic imaging , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/diagnostic imaging , Neoplasms/diagnostic imaging , Animals , Cell Differentiation/physiology , Cells, Cultured , Female , HeLa Cells , Humans , Induced Pluripotent Stem Cells/physiology , Magnetic Resonance Imaging/methods , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/metabolism , Neoplasms/surgery , Tomography, Emission-Computed, Single-Photon/methods , Treatment Outcome , Xenograft Model Antitumor Assays/methods
16.
J Funct Biomater ; 14(5)2023 May 14.
Article in English | MEDLINE | ID: mdl-37233384

ABSTRACT

Nanoparticles (NPs) have unique physicochemical properties that are useful for a broad range of biomedical and industrial applications; nevertheless, increasing concern exists about their biosafety. This review aims to focus on the implications of nanoparticles in cellular metabolism and their outcomes. In particular, some NPs have the ability to modify glucose and lipid metabolism, and this feature is especially interesting to treat diabetes and obesity and to target cancer cells. However, the lack of specificity to reach target cells and the toxicological evaluation of nontargeted cells can potentially induce detrimental side effects, closely related to inflammation and oxidative stress. Therefore, identifying the metabolic alterations caused by NPs, independent of their application, is highly needed. To our knowledge, this increase would lead to the improvement and safer use with a reduced toxicity, increasing the number of available NPs for diagnosis and treatment of human diseases.

17.
Methods Mol Biol ; 2668: 121-132, 2023.
Article in English | MEDLINE | ID: mdl-37140794

ABSTRACT

Exosomes are small vesicles released by all types of cells, and they have been postulated as a promising natural way to carry information amongst cells. Exosomes might serve as mediators for intercellular communication through the delivery of their endogenous cargo to neighbor or distant cells. Recently, this ability to transfer their cargo has open a new therapeutic approach and exosomes have been investigated as vectors for the delivery of the loaded cargo, for instance nanoparticles (NPs).Currently, several methods to load exosomes with NPs have been described; however, the maintenance of the membrane integrity on the vesicle has to be taken into consideration, in order to choose one or another methodology. Here we describe the NP encapsulation through the incubation of the cells with the NPs and the subsequential methods to determine their cargo and to discard detrimental alterations on the loaded exosomes.


Subject(s)
Exosomes , Extracellular Vesicles , Nanoparticles , Nanoparticles/therapeutic use , Cell Communication
18.
Cancers (Basel) ; 15(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37173946

ABSTRACT

Small extracellular vesicle (EV) membranes display characteristic protein-lipidic composition features that are related to their cell of origin, providing valuable clues regarding their parental cell composition and real-time state. This could be especially interesting in the case of cancer cell-derived EVs, as their membranes could serve as valuable tools in liquid biopsy applications and to detect changes in the tumor malignancy. X-Ray Photoelectron Spectroscopy (XPS) is a powerful surface analysis technique able to detect every chemical element present, being also sensitive to their chemical environment. Here we explore the use of XPS as a fast technique to characterize EV membrane composition, with possible application in cancer research. Notably, we have focused on the nitrogen environment as an indicator of the relative abundance of pyridine-type bonding, primary, secondary and tertiary amines. Specifically, we have analyzed how tumoral and healthy cells have different nitrogen chemical environments that can indicate the presence or absence of malignancy. In addition, a collection of human serum samples from cancer patients and healthy donors was also analyzed. The differential XPS analysis of EVs collected from patients confirmed that the patterns of amine evolution could be related to markers of cancer disease, opening the possibility of their use as a non-invasive blood biomarker.

19.
Article in English | MEDLINE | ID: mdl-36780137

ABSTRACT

Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication and have great potential as efficient delivery vectors. However, a better understanding of EV in vivo behavior is hampered by the limitations of current imaging tools. In addition, chemical labels present the risk of altering the EV membrane features and, thus, in vivo behavior. 19F-MRI is a safe bioimaging technique providing selective images of exogenous probes. Here, we present the first example of fluorinated EVs containing PERFECTA, a branched molecule with 36 magnetically equivalent 19F atoms. A PERFECTA emulsion is given to the cells, and PERFECTA-containing EVs are naturally produced. PERFECTA-EVs maintain the physicochemical features, morphology, and biological fingerprint as native EVs but exhibit an intense 19F-NMR signal and excellent 19F relaxation times. In vivo 19F-MRI and tumor-targeting capabilities of stem cell-derived PERFECTA-EVs are also proved. We propose PERFECTA-EVs as promising biohybrids for imaging biodistribution and delivery of EVs throughout the body.

20.
Cells ; 12(9)2023 05 07.
Article in English | MEDLINE | ID: mdl-37174738

ABSTRACT

The induction of pluripotency by enforced expression of different sets of genes in somatic cells has been achieved with reprogramming technologies first described by Yamanaka's group. Methodologies for generating induced pluripotent stem cells are as varied as the combinations of genes used. It has previously been reported that the adenoviral E1a gene can induce the expression of two of the Yamanaka factors (c-Myc and Oct-4) and epigenetic changes. Here, we demonstrate that the E1a-12S over-expression is sufficient to induce pluripotent-like characteristics closely to epiblast stem cells in mouse embryonic fibroblasts through the activation of the pluripotency gene regulatory network. These findings provide not only empirical evidence that the expression of one single factor is sufficient for partial reprogramming but also a potential mechanistic explanation for how viral infection could lead to neoplasia if they are surrounded by the appropriate environment or the right medium, as happens with the tumorogenic niche.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells , Animals , Mice , Cellular Reprogramming/genetics , Cell Differentiation , Fibroblasts/metabolism , Kruppel-Like Factor 4 , Induced Pluripotent Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL