Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Microsc ; 291(1): 73-91, 2023 07.
Article in English | MEDLINE | ID: mdl-36282005

ABSTRACT

The epidermal growth factor receptor (EGFR) is a poster child for the understanding of receptor behaviour, and of paramount importance to cell function and human health. Cloned almost forty years ago, the interest in EGFR's structure/function relationships remains unabated, not least because changes in oncogenic EGFR mutants are key drivers of the formation of lung and brain tumours. The structure of the assemblies formed by EGFR have been comprehensibly investigated by techniques such as high-resolution X-ray crystallography, NMR and all-atom molecular dynamics (MD) simulations. However, the complexity embedded in the portfolio of EGFR states that are only possible in the physiological environment of cells has often proved refractory to cell-free structural methods. Conversely, some key inroads made by quantitative fluorescence microscopy and super-resolution have depended on exploiting the wealth of structures available. Here, a brief personal perspective is provided on how quantitative fluorescence microscopy and super-resolution methods have cross-fertilised with cell-free-derived EGFR structural information. I primarily discuss areas in which my research group has made a contribution to fill gaps in EGFR's cellular structural biology and towards developing new tools to investigate macromolecular assemblies in cells.


Subject(s)
Biology , ErbB Receptors , Child , Humans , Microscopy, Fluorescence/methods
2.
Proc Natl Acad Sci U S A ; 116(26): 12857-12862, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31182605

ABSTRACT

Plant plasma-membrane (PM) proteins are involved in several vital processes, such as detection of pathogens, solute transport, and cellular signaling. For these proteins to function effectively there needs to be structure within the PM allowing, for example, proteins in the same signaling cascade to be spatially organized. Here we demonstrate that several proteins with divergent functions are located in clusters of differing size in the membrane using subdiffraction-limited Airyscan confocal microscopy. Single particle tracking reveals that these proteins move at different rates within the membrane. Actin and microtubule cytoskeletons appear to significantly regulate the mobility of one of these proteins (the pathogen receptor FLS2) and we further demonstrate that the cell wall is critical for the regulation of cluster size by quantifying single particle dynamics of proteins with key roles in morphogenesis (PIN3) and pathogen perception (FLS2). We propose a model in which the cell wall and cytoskeleton are pivotal for regulation of protein cluster size and dynamics, thereby contributing to the formation and functionality of membrane nanodomains.


Subject(s)
Cell Wall/metabolism , Membrane Microdomains/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Arabidopsis , Cell Wall/ultrastructure , Membrane Microdomains/ultrastructure , Microtubules/metabolism , Microtubules/ultrastructure , Single Molecule Imaging
3.
J Microsc ; 281(1): 3-15, 2021 01.
Article in English | MEDLINE | ID: mdl-33111321

ABSTRACT

Octopus (Optics Clustered to OutPut Unique Solutions) celebrated in June 2020 its 10th birthday. Based at Harwell, near Oxford, Octopus is an open access, peer reviewed, national imaging facility that offers successful U.K. applicants supported access to single molecule imaging, confocal microscopy, several flavours of superresolution imaging, light sheet microscopy, optical trapping and cryoscanning electron microscopy. Managed by a multidisciplinary team, Octopus has so far assisted >100 groups of U.K. and international researchers. Cross-fertilisation across fields proved to be a strong propeller of success underpinned by combining access to top-end instrumentation with a strong programme of imaging hardware and software developments. How Octopus was born, and highlights of the multidisciplinary output produced during its 10-year journey are reviewed below, with the aim of celebrating a myriad of collaborations with the U.K. scientific community, and reflecting on their scientific and societal impact.

4.
J Microsc ; 252(1): 16-22, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23889125

ABSTRACT

The phenomenon of total internal reflection fluorescence (TIRF) was placed in the context of optical microscopy by Daniel Axelrod over three decades ago. TIRF microscopy exploits the properties of an evanescent electromagnetic field to optically section sample regions in the close vicinity of the substrate where the field is induced. The first applications in cell biology targeted investigation of phenomena at the basolateral plasma membrane. The most notable application of TIRF is single-molecule experiments, which can provide information on fluctuation distributions and rare events, yielding novel insights on the mechanisms governing the molecular interactions that underpin many fundamental processes within the cell. This short review intends to provide a 'one stop shop' explanation of the electromagnetic theory behind the remarkable properties of the evanescent field, guide the reader through the principles behind building or choosing your own TIRF system and consider how the most popular applications of the method exploit the evanescent field properties.


Subject(s)
Cytological Techniques/methods , Microscopy/methods , Optical Imaging/methods
5.
Opt Express ; 16(25): 20258-65, 2008 Dec 08.
Article in English | MEDLINE | ID: mdl-19065164

ABSTRACT

We combine single molecule fluorescence orientation imaging with single-pair fluorescence resonance energy transfer microscopy, using a total internal reflection microscope. We show how angles and FRET efficiencies can be determined for membrane proteins at the single molecule level and provide data from the epidermal growth factor receptor system in cells.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Cell Membrane/metabolism , Crystallography/methods , ErbB Receptors/metabolism , ErbB Receptors/ultrastructure , Fluorescence Resonance Energy Transfer/instrumentation , Molecular Probe Techniques/instrumentation , Cell Line, Tumor , Equipment Design , Equipment Failure Analysis , Humans , Protein Conformation
6.
Opt Lett ; 31(14): 2157-9, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16794711

ABSTRACT

We have developed a wide-field total-internal-reflection fluorescence microscope capable of imaging single molecules in live cells, resolved in both wavelength and polarization. We show fluorescence resonance energy transfer between single pairs of fluorescent molecules bound to signaling receptors in the plasma membrane of live cells and demonstrate the importance of polarization discrimination in addition to wavelength separation.


Subject(s)
Fibroblasts/cytology , Fibroblasts/metabolism , Fluorescence Resonance Energy Transfer/instrumentation , Membrane Proteins/analysis , Microscopy, Fluorescence, Multiphoton/instrumentation , Animals , Cells, Cultured , Equipment Design , Equipment Failure Analysis , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes , Mice , Microscopy, Fluorescence, Multiphoton/methods , Reproducibility of Results , Sensitivity and Specificity
7.
Cell Mol Biol (Noisy-le-grand) ; 46(6): 1103-12, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10976867

ABSTRACT

The interactions of growth factors with cell surface receptors regulate fundamental cell processes, such as growth, differentiation and transformation. Understanding the nature of these interactions at the molecular level is of fundamental importance in cell biology. This is not only from the point of view of basic science, but also because of the repercussions such knowledge might have in understanding the mode of action of drugs in cells. Receptor mediated endocytosis has been implicated in the downregulation of the mitogenic signal. However, no data are thus far available on how growth factor/receptor interactions might control endocytic trafficking. Here we show that information on modes of binding and receptor conformational changes can be obtained using time-resolved fluorescence methods. We have found that fluorescent probes bound to epidermal growth factor (EGF) show dynamic fluorescence quenching when EGF is bound to internalising EGF receptors (EGFR). We propose that this dynamic quenching takes place because EGF-bound probes interact with tryptophan residues in the extracellular domain of the EGF-EGFR complex. Real-time accumulation of fluorescent decays has also allowed us to follow the time course of a conformational change in EGFR occurring during endocytosis, and correlate this information with endosomal trafficking and EGFR recycling.


Subject(s)
Endocytosis/physiology , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Cell Line , Fluorescence Polarization , Fluorescent Dyes , Humans , Hydrogen-Ion Concentration , Kinetics , Synchrotrons
8.
J Struct Biol ; 106(3): 264-71, 1991 Jun.
Article in English | MEDLINE | ID: mdl-1804281

ABSTRACT

This report describes a comparative X-ray diffraction study of the supramolecular structure of frog sartorius and semitendinosus muscles. For sarcomere lengths of 2.7 microns and below the X-ray diffraction diagrams of each muscle type are very similar; the only differences being that the diffraction diagram for semitendinosus muscles exhibit the presence of a broad diffraction band or a cluster of diffraction orders at a spacing of ca. 230.0 nm and, also, they lack a periodicity of ca. 102.0 nm. For sarcomere lengths greater than 2.7 microns disruption of the sarcomere from sartorius muscle occurs as seen by the loss of sampling in the diffraction diagram. The semitendinosus muscle can be stretched to much longer lengths (in excess of 3.0 microns) before a loss of sampling is detected. The data also shows that in the case of the semitendinosus muscle for long sarcomere lengths transverse bands of mass are able to move without retaining a defined distance to either the Z or the M lines. This is not observed in the case of the sartorius muscle. Thus, at resolutions between ca. 3.6 microns and 7.50 nm significant ultrastructural differences between these two muscles are apparent. The data suggest that the ability of these mass bands to move may be responsible for the differences in the development of passive tension exhibited by these two muscles.


Subject(s)
Muscles/ultrastructure , Animals , Rana esculenta , Sarcomeres/ultrastructure , X-Ray Diffraction
9.
J Muscle Res Cell Motil ; 15(3): 319-48, 1994 Jun.
Article in English | MEDLINE | ID: mdl-7857403

ABSTRACT

Using the facilities at the Daresbury Synchrotron Radiation Source, meridional diffraction patterns of muscles at ca 8 degrees C were recorded with a time resolution of 2 or 4 ms. In isometric contractions tetanic peak tension (P0) is reached in ca 400 ms. Under such conditions, following stimulation from rest, the timing of changes in the major reflections (the 38.2 nm troponin reflection, and the 21.5 and 14.34/14.58 nm myosin reflections) can be explained in terms of four types of time courses: K1, K2, K3 and K4. The onset of K1 occurs immediately after stimulation, but that of K2, K3 and K4 is delayed by a latent period of ca 16 ms. Relative to the end of their own latent periods the half-times for K1, K2, K3 and K4 are 14-16, 16, 32 and 52 ms, respectively. In half-times, K1, K2, K3 lead tension rise by 52, 36 and 20 ms, respectively. K4 parallels the time course of tension rise. From an analysis of the data we conclude that K1 reflects thin filament activation which involves the troponin system; K2 arises from an order-disorder transition during which the register between the filaments is lost; K3 is due to the formation of an acto-myosin complex which (at P0) causes 70% or more of the heads to diffract with actin-based periodicities; and K4 is caused by a change in the axial orientation of the myosin heads (relative to thin filament axis) which is estimated to be from 65-70 degrees at rest to ca 90 degrees at P0. Isotonic contraction experiments showed that during shortening under a load of ca 0.27 P0, at least 85% of the heads (relative to those forming an acto-myosin complex at P0) diffract with actin-based periodicities, whilst their axial orientation does not change from that at rest. During shortening under a negligible load, at most 5-10% of the heads (relative to those forming an acto-myosin complex at P0) diffract with actin-based periodicities, and their axial orientation also remains the same as that at rest. This suggests that in isometric contractions the change in axial orientation is not the cause of active tension production, but rather the result of it. Analysis of the data reveals that independent of load, the extent of asynchronous axial motions executed by most of the cycling heads is no more than 0.5-0.65 nm greater than at rest.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Isometric Contraction/physiology , Isotonic Contraction/physiology , Muscle, Skeletal/chemistry , Muscle, Skeletal/physiology , Myosins/analysis , Myosins/physiology , Rana catesbeiana/physiology , Animals , Mathematics , Myosins/chemistry , Time Factors , X-Ray Diffraction
10.
Adv Biophys ; 27: 15-33, 1991.
Article in English | MEDLINE | ID: mdl-1755357

ABSTRACT

This report provides a preliminary sketch of the results obtained in a two-dimensional time resolved X-ray diffraction study of "live" frog sartorius muscles undergoing isometric tetani. These results demonstrate the recently developed capability to record time resolved (10 msec time resolution), two-dimensional X-ray diffraction diagrams throughout the cycle of contraction. The correlation between the time courses of the diffraction features in the whole of the diffraction diagram establishes a sequence of structural events, which suggest that during the transition from rest to the plateau of tension and the subsequent recovery, the following sequence of events takes place: a) Following the activation phase, which is best monitored by the increase of intensity on the second actin layer line at 18.0 nm spacing (5), there is the onset of three dimensional disorder due to the filaments losing their axial alignment and the myosin heads rotating azimuthally and moving radially outwards. A set of low-angle layer lines, following the actin based spacings seen in rigor (i.e., at spacings of ca. 36.5-37.5, 24.0 and 18.0 nm) become visible and those at ca. 24.0 and 18.0 nm appear to increase in intensity during this phase with a time course that cannot be determined accurately because of the proximity of the neighbouring first, second and third myosin layer lines and the weakness of these diffraction features. Whether the first of these layer lines increases or not is difficult to ascertain. Moreover, proper account of the loss in crystallinity during the development of tension must be made before the comparisons in intensity between the rest and peak of tension states have any significance. Nevertheless, these features together with the behaviour of the equatorial reflections and the meridional region of the third myosin layer line indicate that a sizeable fraction of the crossbridges may become axially disposed with an actin based periodicity. The formation of this complex does not immediately result in the generation of tension. The labelling of the thin filaments is also reflected in the main actin layer lines at 5.9 and 5.1 nm. b) The tension generating phase is monitored by the intensity changes in the meridional region of the third myosin layer line, which are best explained by a change in the orientation/conformation of the tension bearing crossbridges, (which probably adopt a more perpendicular orientation to the filament axis). c) At the end of stimulation, the crossbridges return to an axial spacing and axial orientation (although not yet azimuthal) similar to the one at rest.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Isometric Contraction , Muscles/physiology , Animals , In Vitro Techniques , Rana catesbeiana , X-Ray Diffraction/methods
11.
J Muscle Res Cell Motil ; 14(3): 311-24, 1993 Jun.
Article in English | MEDLINE | ID: mdl-8360320

ABSTRACT

Results were obtained from contracting frog muscles by collecting high quality time-resolved, two-dimensional, X-ray diffraction patterns at the British Synchrotron Radiation Source (SERC, Daresbury, Laboratory). The structural transitions associated with isometric tension generation were recorded under conditions in which the three-dimensional order characteristic of the rest state is either present or absent. In both cases, new layer lines appear during tension generation, subsequent to changes from activation events in the thin filaments. Compared with the 'decorated' actin layer lines of the rigor state, the spacings of the new layer lines are similar whereas their intensities differ substantially. We conclude that in contracting muscle an actomyosin complex is formed whose structure is not like that in rigor, although it is possible that the interacting sites are the same. Transition from rest to plateau of tension is accompanied by approximately 1.6% increase in the axial spacing of the myosin layer lines. This is explained as arising from axial disposition of the interacting myosin heads in the actomyosin complex. Model calculations are presented which support this view. We argue that in a situation where an actomyosin complex is formed during contraction, one cannot describe the diffraction features as being either thick or thin filament based. Accordingly, the layer lines seen during tension generation are referred to as actomyosin layer lines. It is shown that these layer lines can be indexed as submultiples of a minimum axial repeat of approximately 218.7 nm. After lattice disorder effects are taken into account, the intensity increases on the 15th and 21st AM layer lines at spacings of approximately 14.58 and 10.4 nm respectively, show the same time course as tension rise. However, the time course of the intensity increase of the other actomyosin layer lines and of the spacing change (which is the same for both phenomena) shows a substantial lead over tension rise. These findings suggest that the actomyosin complex formed prior to tension rise is a non-tension-generating state and that this is followed by a transition of the complex to a tension-generating state. The intensity increase in the 15th actomyosin layer line, which parallels tension rise, can be accounted for assuming that in the tension-generating state the attached heads adopt (axially) a more perpendicular orientation with respect to the muscle axis than is seen at rest or in the non-tension-generating state. This suggests the existence of at least two structurally distinct interacting myosin head conformations.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Actomyosin/ultrastructure , Isometric Contraction , X-Ray Diffraction/methods , Animals , Kinetics , Rana catesbeiana/physiology , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL