Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Sci Rep ; 14(1): 12783, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834616

ABSTRACT

The Aurignacian is the first European technocomplex assigned to Homo sapiens recognized across a wide geographic extent. Although archaeologists have identified marked chrono-cultural shifts within the Aurignacian mostly by examining the techno-typological variations of stone and osseous tools, unraveling the underlying processes driving these changes remains a significant scientific challenge. Scholars have, for instance, hypothesized that the Campanian Ignimbrite (CI) super-eruption and the climatic deterioration associated with the onset of Heinrich Event 4 had a substantial impact on European foraging groups. The technological shift from the Protoaurignacian to the Early Aurignacian is regarded as an archaeological manifestation of adaptation to changing environments. However, some of the most crucial regions and stratigraphic sequences for testing these scenarios have been overlooked. In this study, we delve into the high-resolution stratigraphic sequence of Grotta di Castelcivita in southern Italy. Here, the Uluzzian is followed by three Aurignacian layers, sealed by the eruptive units of the CI. Employing a comprehensive range of quantitative methods-encompassing attribute analysis, 3D model analysis, and geometric morphometrics-we demonstrate that the key technological feature commonly associated with the Early Aurignacian developed well before the deposition of the CI tephra. Our study provides thus the first direct evidence that the volcanic super-eruption played no role in this cultural process. Furthermore, we show that local paleo-environmental proxies do not correlate with the identified patterns of cultural continuity and discontinuity. Consequently, we propose alternative research paths to explore the role of demography and regional trajectories in the development of the Upper Paleolithic.


Subject(s)
Archaeology , Italy , Humans , History, Ancient , Technology , Cultural Evolution
2.
Nat Commun ; 15(1): 8016, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271648

ABSTRACT

The process by which Palaeolithic Europe was transformed from a Neanderthal-dominated region to one occupied exclusively by Homo sapiens has proven challenging to diagnose. A blurred chronology has made it difficult to determine when Neanderthals disappeared and whether modern humans overlapped with them. Italy is a crucial region because here we can identify not only Late Mousterian industries, assumed to be associated with Neanderthals, but also early Upper Palaeolithic industries linked with the appearance of early H. sapiens, such as the Uluzzian and the Aurignacian. Here, we present a chronometric dataset of 105 new determinations (74 radiocarbon and 31 luminescence ages) from four key southern Italian sites: Cavallo, Castelcivita, Cala, and Oscurusciuto. We built Bayesian-based chronometric models incorporating these results alongside the relative stratigraphic sequences at each site. The results suggest; 1) that the disappearance of Neanderthals probably pre-dated the appearance of early modern humans in the region and; 2) that there was a partial overlap in the chronology of the Uluzzian and Protoaurignacian, suggesting that these industries may have been produced by different human groups in Europe.


Subject(s)
Bayes Theorem , Fossils , Neanderthals , Italy , Animals , Humans , Radiometric Dating/methods , Archaeology/methods , History, Ancient
3.
J Quat Sci ; 37(2): 204-216, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35874299

ABSTRACT

After the last interglacial [Marine Isotope Stage (MIS) 5e] Europe was affected by several harsh climatic oscillations. In this context southern Italy acted, like the rest of peninsular Mediterranean Europe, as a 'glacial refugium', allowing the survival of various species, and was involved in the spread of 'cold taxa' (e.g. woolly mammoth and woolly rhino) only during the coldest phases (MIS 4 and MIS 2). Both late Mousterian and early Upper Palaeolithic sites testify to a human occupation continuity in southern Italy and especially in Apulia in this time span. Here we present a focus on three key Apulian Palaeolithic sequences (Grotta di Santa Croce, Riparo L'Oscurusciuto and Grotta del Cavallo - layers F-E) jointly spanning from the late MIS 4 to the demise of Neanderthals around 43 ka. Novel chronological, sedimentological and zooarchaeological data are discussed for the first time in the light of the palaeoenvironmental information provided by recent analyses carried out on a speleothem from Pozzo Cucù cave (Bari) and the results of the magnetic susceptibility analysis from Riparo L'Oscurusciuto. This integrated reading allows a better understanding of the role played by the Apulian region as both a refugium for late Neaderthals and a suitable habitat for the early settling of modern humans.

4.
Sci Adv ; 7(39): eabi7673, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34559560

ABSTRACT

The origin, development, and legacy of the enigmatic Etruscan civilization from the central region of the Italian peninsula known as Etruria have been debated for centuries. Here we report a genomic time transect of 82 individuals spanning almost two millennia (800 BCE to 1000 CE) across Etruria and southern Italy. During the Iron Age, we detect a component of Indo-European­associated steppe ancestry and the lack of recent Anatolian-related admixture among the putative non­Indo-European­speaking Etruscans. Despite comprising diverse individuals of central European, northern African, and Near Eastern ancestry, the local gene pool is largely maintained across the first millennium BCE. This drastically changes during the Roman Imperial period where we report an abrupt population-wide shift to ~50% admixture with eastern Mediterranean ancestry. Last, we identify northern European components appearing in central Italy during the Early Middle Ages, which thus formed the genetic landscape of present-day Italian populations.

SELECTION OF CITATIONS
SEARCH DETAIL