Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33771926

ABSTRACT

Infection with human and simian immunodeficiency viruses (HIV/SIV) requires binding of the viral envelope glycoprotein (Env) to the host protein CD4 on the surface of immune cells. Although invariant in humans, the Env binding domain of the chimpanzee CD4 is highly polymorphic, with nine coding variants circulating in wild populations. Here, we show that within-species CD4 diversity is not unique to chimpanzees but found in many African primate species. Characterizing the outermost (D1) domain of the CD4 protein in over 500 monkeys and apes, we found polymorphic residues in 24 of 29 primate species, with as many as 11 different coding variants identified within a single species. D1 domain amino acid replacements affected SIV Env-mediated cell entry in a single-round infection assay, restricting infection in a strain- and allele-specific fashion. Several identical CD4 polymorphisms, including the addition of N-linked glycosylation sites, were found in primate species from different genera, providing striking examples of parallel evolution. Moreover, seven different guenons (Cercopithecus spp.) shared multiple distinct D1 domain variants, pointing to long-term trans-specific polymorphism. These data indicate that the HIV/SIV Env binding region of the primate CD4 protein is highly variable, both within and between species, and suggest that this diversity has been maintained by balancing selection for millions of years, at least in part to confer protection against primate lentiviruses. Although long-term SIV-infected species have evolved specific mechanisms to avoid disease progression, primate lentiviruses are intrinsically pathogenic and have left their mark on the host genome.


Subject(s)
Acquired Immunodeficiency Syndrome/genetics , CD4 Antigens/genetics , Catarrhini/genetics , Catarrhini/virology , Genetic Variation , HIV , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus , Alleles , Animals , CD4 Antigens/chemistry , Evolution, Molecular , Gene Products, env/chemistry , Humans , Protein Binding , Protein Domains
2.
J Virol ; 92(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-29976668

ABSTRACT

The host restriction factor tetherin inhibits virion release from infected cells and poses a significant barrier to successful zoonotic transmission of primate lentiviruses to humans. While most simian immunodeficiency viruses (SIV), including the direct precursors of human immunodeficiency virus type 1 (HIV-1) and HIV-2, use their Nef protein to counteract tetherin in their natural hosts, they fail to antagonize the human tetherin ortholog. Pandemic HIV-1 group M and epidemic group O strains overcame this hurdle by adapting their Vpu and Nef proteins, respectively, whereas HIV-2 group A uses its envelope (Env) glycoprotein to counteract human tetherin. Whether or how the remaining eight groups of HIV-2 antagonize this antiviral factor has remained unclear. Here, we show that Nef proteins from diverse groups of HIV-2 do not or only modestly antagonize human tetherin, while their ability to downmodulate CD3 and CD4 is highly conserved. Experiments in transfected cell lines and infected primary cells revealed that not only Env proteins of epidemic HIV-2 group A but also those of a circulating recombinant form (CRF01_AB) and rare groups F and I decrease surface expression of human tetherin and significantly enhance progeny virus release. Intriguingly, we found that many SIVsmm Envs also counteract human as well as smm tetherin. Thus, Env-mediated tetherin antagonism in different groups of HIV-2 presumably stems from a preadaptation of their SIVsmm precursors to humans. In summary, we identified a phenotypic trait of SIVsmm that may have facilitated its successful zoonotic transmission to humans and the emergence of HIV-2.IMPORTANCE HIV-2 groups A to I resulted from nine independent cross-species transmission events of SIVsmm to humans and differ considerably in their prevalence and geographic spread. Thus, detailed characterization of these viruses offers a valuable means to elucidate immune evasion mechanisms and human-specific adaptations determining viral spread. In a systematic comparison of rare and epidemic HIV-2 groups and their simian SIVsmm counterparts, we found that the ability of Nef to downmodulate the primary viral entry receptor CD4 and the T cell receptor CD3 is conserved, while effects on CD28, CD74, and major histocompatibility complex class I surface expression vary considerably. Furthermore, we show that not only the Env proteins of HIV-2 groups A, AB, F, and I but also those of some SIVsmm isolates antagonize human tetherin. This finding helps to explain why SIVsmm has been able to cross the species barrier to humans on at least nine independent occasions.


Subject(s)
Antigens, CD/genetics , Gene Products, nef/genetics , HIV-2/genetics , Simian Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , Antigens, CD/metabolism , CD3 Complex/genetics , CD4 Antigens/genetics , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , HIV-2/metabolism , Host-Pathogen Interactions , Humans , Simian Immunodeficiency Virus/metabolism
3.
J Virol ; 90(2): 630-5, 2016 01 15.
Article in English | MEDLINE | ID: mdl-26559828

ABSTRACT

Wild nonhuman primates are immediate sources and long-term reservoirs of human pathogens. However, ethical and technical challenges have hampered the identification of novel blood-borne pathogens in these animals. We recently examined RNA viruses in plasma from wild African monkeys and discovered several novel, highly divergent viruses belonging to the family Arteriviridae. Close relatives of these viruses, including simian hemorrhagic fever virus, have caused sporadic outbreaks of viral hemorrhagic fever in captive macaque monkeys since the 1960s. However, arterivirus infection in wild nonhuman primates had not been described prior to 2011. The arteriviruses recently identified in wild monkeys have high sequence and host species diversity, maintain high viremia, and are prevalent in affected populations. Taken together, these features suggest that the simian arteriviruses may be "preemergent" zoonotic pathogens. If not, this would imply that biological characteristics of RNA viruses thought to facilitate zoonotic transmission may not, by themselves, be sufficient for such transmission to occur.


Subject(s)
Arterivirus Infections/transmission , Arterivirus Infections/veterinary , Arterivirus/physiology , Primate Diseases/transmission , Primate Diseases/virology , Zoonoses/transmission , Zoonoses/virology , Animals , Arterivirus/genetics , Arterivirus Infections/virology , Haplorhini , Humans
4.
J Virol ; 90(10): 4966-4980, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26937037

ABSTRACT

UNLABELLED: CD4 tropism is conserved among all primate lentiviruses and likely contributes to viral pathogenesis by targeting cells that are critical for adaptive antiviral immune responses. Although CD4-independent variants of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) have been described that can utilize the coreceptor CCR5 or CXCR4 in the absence of CD4, these viruses typically retain their CD4 binding sites and still can interact with CD4. We describe the derivation of a novel CD4-independent variant of pathogenic SIVmac239, termed iMac239, that was used to derive an infectious R5-tropic SIV lacking a CD4 binding site. Of the seven mutations that differentiate iMac239 from wild-type SIVmac239, a single change (D178G) in the V1/V2 region was sufficient to confer CD4 independence in cell-cell fusion assays, although other mutations were required for replication competence. Like other CD4-independent viruses, iMac239 was highly neutralization sensitive, although mutations were identified that could confer CD4-independent infection without increasing its neutralization sensitivity. Strikingly, iMac239 retained the ability to replicate in cell lines and primary cells even when its CD4 binding site had been ablated by deletion of a highly conserved aspartic acid at position 385, which, for HIV-1, plays a critical role in CD4 binding. iMac239, with and without the D385 deletion, exhibited an expanded host range in primary rhesus peripheral blood mononuclear cells that included CCR5(+) CD8(+) T cells. As the first non-CD4-tropic SIV, iMac239-ΔD385 will afford the opportunity to directly assess the in vivo role of CD4 targeting on pathogenesis and host immune responses. IMPORTANCE: CD4 tropism is an invariant feature of primate lentiviruses and likely plays a key role in pathogenesis by focusing viral infection onto cells that mediate adaptive immune responses and in protecting virions attached to cells from neutralizing antibodies. Although CD4-independent viruses are well described for HIV and SIV, these viruses characteristically retain their CD4 binding site and can engage CD4 if available. We derived a novel CD4-independent, CCR5-tropic variant of the pathogenic molecular clone SIVmac239, termed iMac239. The genetic determinants of iMac239's CD4 independence provide new insights into mechanisms that underlie this phenotype. This virus remained replication competent even after its CD4 binding site had been ablated by mutagenesis. As the first truly non-CD4-tropic SIV, lacking the capacity to interact with CD4, iMac239 will provide the unique opportunity to evaluate SIV pathogenesis and host immune responses in the absence of the immunomodulatory effects of CD4(+) T cell targeting and infection.


Subject(s)
CD4 Antigens/metabolism , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/physiology , Viral Tropism , Virus Attachment , Animals , Antibodies, Neutralizing/immunology , Binding Sites , CD4 Antigens/immunology , CD8-Positive T-Lymphocytes/virology , Cell Line , Humans , Leukocytes, Mononuclear/virology , Macaca mulatta , Mutagenesis , Receptors, CCR5/immunology , Receptors, CCR5/metabolism , Receptors, CXCR4/immunology , Receptors, CXCR4/metabolism , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/pathogenicity , Viral Envelope Proteins/genetics , Virus Replication/genetics
6.
J Virol ; 87(8): 4584-95, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23408608

ABSTRACT

Simian immunodeficiency virus (SIV) stocks for in vivo nonhuman primate models of AIDS are typically generated by transfection of 293T cells with molecularly cloned viral genomes or by expansion in productively infected T cells. Although titers of stocks are determined for infectivity in vitro prior to in vivo inoculation, virus production methods may differentially affect stock features that are not routinely analyzed but may impact in vivo infectivity, mucosal transmissibility, and early infection events. We performed a detailed analysis of nine SIV stocks, comprising five infection-derived SIVmac251 viral swarm stocks and paired infection- and transfected-293T-cell-derived stocks of both SIVmac239 and SIVmac766. Representative stocks were evaluated for (i) virus content, (ii) infectious titer, (iii) sequence diversity and polymorphism frequency by single-genome amplification and 454 pyrosequencing, (iv) virion-associated Env content, and (v) cytokine and chemokine content by 36-plex Luminex analysis. Regardless of production method, all stocks had comparable particle/infectivity ratios, with the transfected-293T stocks possessing the highest overall virus content and infectivity titers despite containing markedly lower levels of virion-associated Env than infection-derived viruses. Transfected-293T stocks also contained fewer and lower levels of cytokines and chemokines than infection-derived stocks, which had elevated levels of multiple analytes, with substantial variability among stocks. Sequencing of the infection-derived SIVmac251 stocks revealed variable levels of viral diversity between stocks, with evidence of stock-specific selection and expansion of unique viral lineages. These analyses suggest that there may be underappreciated features of SIV in vivo challenge stocks with the potential to impact early infection events, which may merit consideration when selecting virus stocks for in vivo studies.


Subject(s)
Primate Diseases/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/isolation & purification , Simian Immunodeficiency Virus/pathogenicity , Animals , Genetic Variation , Sequence Analysis, DNA , Simian Immunodeficiency Virus/genetics , Transfection/methods , Viral Load , Virus Cultivation/methods
8.
PLoS Biol ; 8(8)2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20808775

ABSTRACT

Simian immunodeficiency viruses of sooty mangabeys (SIVsm) are the source of multiple, successful cross-species transmissions, having given rise to HIV-2 in humans, SIVmac in rhesus macaques, and SIVstm in stump-tailed macaques. Cellular assays and phylogenetic comparisons indirectly support a role for TRIM5alpha, the product of the TRIM5 gene, in suppressing interspecies transmission and emergence of retroviruses in nature. Here, we investigate the in vivo role of TRIM5 directly, focusing on transmission of primate immunodeficiency viruses between outbred primate hosts. Specifically, we retrospectively analyzed experimental cross-species transmission of SIVsm in two cohorts of rhesus macaques and found a significant effect of TRIM5 genotype on viral replication levels. The effect was especially pronounced in a cohort of animals infected with SIVsmE543-3, where TRIM5 genotype correlated with approximately 100-fold to 1,000-fold differences in viral replication levels. Surprisingly, transmission occurred even in individuals bearing restrictive TRIM5 genotypes, resulting in attenuation of replication rather than an outright block to infection. In cell-culture assays, the same TRIM5 alleles associated with viral suppression in vivo blocked infectivity of two SIVsm strains, but not the macaque-adapted strain SIVmac239. Adaptations appeared in the viral capsid in animals with restrictive TRIM5 genotypes, and similar adaptations coincide with emergence of SIVmac in captive macaques in the 1970s. Thus, host TRIM5 can suppress viral replication in vivo, exerting selective pressure during the initial stages of cross-species transmission.


Subject(s)
Monkey Diseases/transmission , Proteins/metabolism , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Immunodeficiency Virus/pathogenicity , Virus Replication/drug effects , Animals , Cercocebus atys , Genotype , Macaca mulatta , Monkey Diseases/virology , Proteins/genetics , Proteins/pharmacology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Species Specificity , Ubiquitin-Protein Ligases
10.
Nature ; 449(7158): 101-4, 2007 Sep 06.
Article in English | MEDLINE | ID: mdl-17805298

ABSTRACT

Most successful vaccines elicit neutralizing antibodies and this property is a high priority when developing an HIV vaccine. Indeed, passively administered neutralizing antibodies have been shown to protect against HIV challenge in some of the best available animal models. For example, antibodies given intravenously can protect macaques against intravenous or mucosal SHIV (an HIV/SIV chimaera) challenge and topically applied antibodies can protect macaques against vaginal SHIV challenge. However, the mechanism(s) by which neutralizing antibodies afford protection against HIV is not understood and, in particular, the role of antibody Fc-mediated effector functions is unclear. Here we report that there is a dramatic decrease in the ability of a broadly neutralizing antibody to protect macaques against SHIV challenge when Fc receptor and complement-binding activities are engineered out of the antibody. No loss of antibody protective activity is associated with the elimination of complement binding alone. Our in vivo results are consistent with in vitro assays indicating that interaction of Fc-receptor-bearing effector cells with antibody-complexed infected cells is important in reducing virus yield from infected cells. Overall, the data suggest the potential importance of activity against both infected cells and free virus for effective protection against HIV.


Subject(s)
AIDS Vaccines/immunology , Complement System Proteins/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV/immunology , Receptors, Fc/immunology , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Complement C1q/immunology , Complement C3/immunology , Female , HIV Antibodies/chemistry , HIV Antibodies/genetics , HIV Antigens/immunology , HIV Infections/blood , HIV Infections/virology , Humans , Immunity, Mucosal/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , Neutralization Tests , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Time Factors , Viral Load
11.
J Microbiol Immunol Infect ; 56(2): 400-407, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36210315

ABSTRACT

BACKGROUND: Chronic Chagasic cardiomyopathy is responsible for a large disease burden in the Americas, and a therapeutic vaccine would be highly desirable. We tested the safety and efficacy of a therapeutic DNA vaccine encoding antigens TSA-1 and Tc24 for preventing cardiac alterations in experimentally infected macaques. A secondary objective was to evaluate the feasibility of detecting changes in cardiac alterations in these animals. METHODS: Naïve rhesus macaques were infected with Trypanosoma cruzi and treated with three doses of DNA vaccines. RESULTS: Blood cell counts and chemistry indicated that therapeutic vaccination was safe, as hepatic and renal function appeared unaffected by the vaccination and/or infection with T. cruzi. Electrocardiographic (ECG) recordings indicated that no marked arrhythmias developed up to 7 months post-infection. Univariate analysis of ECG parameters found no significant differences in any of these parameters between vaccinated and control macaques. However, linear discriminant analysis revealed that control macaques presented clear alterations in their ECG patterns at 7 months post-infection, indicative of the onset of conduction defects and cardiac alterations, and these changes were prevented in vaccine treated macaques. CONCLUSIONS: This is the first evidence that therapeutic vaccination against T. cruzi can prevent cardiac alterations in non-human primates, strengthening the rationale for developing a human vaccine against Chagas disease.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Vaccines , Humans , Animals , Macaca mulatta , Chagas Disease/drug therapy , Chagas Disease/prevention & control , Vaccination
12.
Microbiol Spectr ; : e0423622, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37668388

ABSTRACT

Chronic Chagasic cardiomyopathy develops years after infection in 20-40% of patients, but disease progression is poorly understood. Here, we assessed Trypanosoma cruzi parasite dynamics and pathogenesis over a 2.5-year period in naturally infected rhesus macaques. Individuals with better control of parasitemia were infected with a greater diversity of parasite strains compared to those with increasing parasitemia over time. Also, the in vivo parasite multiplication rate decreased with increasing parasite diversity, suggesting competition among strains or a stronger immune response in multiple infections. Significant differences in electrocardiographic (ECG) profiles were observed in Chagasic macaques compared to uninfected controls, suggesting early conduction defects, and changes in ECG patterns over time were observed only in macaques with increasing parasitemia and lower parasite diversity. Disease progression was also associated with plasma fibronectin degradation, which may serve as a biomarker. These data provide a novel framework for the understanding of Chagas disease pathogenesis, with parasite diversity shaping disease progression.IMPORTANCEChagas disease progression remains poorly understood, and patients at increased risk of developing severe cardiac disease cannot be distinguished from those who may remain asymptomatic. Monitoring of Trypanosoma cruzi strain dynamics and pathogenesis over 2-3 years in naturally infected macaques shows that increasing parasite diversity in hosts is detrimental to parasite multiplication and Chagasic cardiomyopathy disease progression. This provides a novel framework for the understanding of Chagas disease pathogenesis.

13.
J Virol ; 85(9): 4602-5, 2011 May.
Article in English | MEDLINE | ID: mdl-21325423

ABSTRACT

We analyzed the ability of a vaccine vector based on vesicular stomatitis virus (VSV) to induce a neutralizing antibody (NAb) response to avian influenza viruses (AIVs) in rhesus macaques. Animals vaccinated with vectors expressing either strain A/Hong Kong/156/1997 or strain A/Vietnam/1203/2004 H5 hemagglutinin (HA) were able to generate robust NAb responses. The ability of the vectors to induce NAbs against homologous and heterologous AIVs after a single dose was dependent upon the HA antigen incorporated into the VSV vaccine. The vectors expressing strain A/Vietnam/1203/2004 H5 HA were superior to those expressing strain A/Hong Kong/156/1997 HA at inducing cross-clade NAbs.


Subject(s)
Antibodies, Neutralizing/blood , Drug Carriers , Genetic Vectors , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Vesiculovirus/genetics , Animals , Antibodies, Viral/blood , Cross Reactions , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/genetics , Macaca mulatta
14.
J Virol ; 85(12): 5889-96, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21490096

ABSTRACT

Natural infection with simian retrovirus (SRV) has long been recognized in rhesus macaques (RMs) and may result in an AIDS-like disease. Importantly, SRV infections persist as a problem in recently imported macaques. Therefore, there is a clear need to control SRV spread in macaque colonies. We developed a recombinant vesicular stomatitis virus (VSV)-SRV vaccine consisting of replication-competent hybrid VSVs that express SRV gag and env in separate vectors. The goal of this study was to assess the immunogenicity and protective efficacy of the VSV-SRV serotype 2 vaccine prime-boost approach in RMs. The VSV-SRV vector (expressing either SRV gag or env) vaccines were intranasally administered in 4 RMs, followed by a boost 1 month after the first vaccination. Four RMs served as controls and received the VSV vector alone. Two months after the boost, all animals were intravenously challenged with SRV-2 and monitored for 90 days. After the SRV-2 challenge, all four controls became infected, and viral loads (VLs) ranged from 10(6) to 10(8) SRV RNA copies/ml of plasma. Two animals in the control group developed simian AIDS within 7 to 8 weeks postinfection and were euthanized. Anemia and weight loss were observed in the remaining controls. During acute infection, severe B-cell depletion and no significant changes in T-cell population were observed in the control group. Control RMs with greater preservation of B cells and lower VLs survived longer. SRV-2 was undetectable in vaccinated animals, which remained healthy, with no clinical or biological signs of infection and preservation of B cells. Our study showed that the VSV-SRV vaccine is a strong approach for preventing clinically relevant type D retrovirus infection and disease in RMs, with protection of 4/4 RMs from SRV infection and prevention of B-cell destruction. B-cell protection was the strongest correlate of the long-term survival of all vaccinated and control RMs.


Subject(s)
B-Lymphocytes/immunology , Genetic Vectors/administration & dosage , Macaca mulatta , Mason-Pfizer monkey virus/immunology , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/prevention & control , Vesiculovirus/genetics , Animals , Gene Products, env/genetics , Gene Products, env/immunology , Gene Products, env/metabolism , Gene Products, gag/genetics , Gene Products, gag/immunology , Gene Products, gag/metabolism , Immunization , Immunization, Secondary , Mason-Pfizer monkey virus/genetics , Mason-Pfizer monkey virus/pathogenicity , SAIDS Vaccines/genetics , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/mortality , Simian Acquired Immunodeficiency Syndrome/virology , Vaccination
15.
J Virol ; 85(12): 5764-72, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21490100

ABSTRACT

We constructed vaccine vectors based on live recombinant vesicular stomatitis virus (VSV) and a Semliki Forest virus (SFV) replicon (SFVG) that propagates through expression of the VSV glycoprotein (G). These vectors expressing simian immunodeficiency virus (SIV) Gag and Env proteins were used to vaccinate rhesus macaques with a new heterologous prime-boost regimen designed to optimize induction of antibody. Six vaccinated animals and six controls were then given a high-dose mucosal challenge with the diverse SIVsmE660 quasispecies. All control animals became infected and had peak viral RNA loads of 10(6) to 10(8) copies/ml. In contrast, four of the vaccinees showed significant (P = 0.03) apparent sterilizing immunity and no detectable viral loads. Subsequent CD8(+) T cell depletion confirmed the absence of SIV infection in these animals. The two other vaccinees had peak viral loads of 7 × 10(5) and 8 × 10(3) copies/ml, levels below those of all of the controls, and showed undetectable virus loads by day 42 postchallenge. The vaccine regimen induced high-titer prechallenge serum neutralizing antibodies (nAbs) to some cloned SIVsmE660 Env proteins, but antibodies able to neutralize the challenge virus swarm were not detected. The cellular immune responses induced by the vaccine were generally weak and did not correlate with protection. Although the immune correlates of protection are not yet clear, the heterologous VSV/SFVG prime-boost is clearly a potent vaccine regimen for inducing virus nAbs and protection against a heterogeneous viral swarm.


Subject(s)
Antibodies, Viral/blood , Genetic Vectors/immunology , Immunization Schedule , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/blood , Gene Products, env/genetics , Gene Products, env/immunology , Gene Products, env/metabolism , Gene Products, gag/genetics , Gene Products, gag/immunology , Gene Products, gag/metabolism , Genetic Vectors/administration & dosage , Immunization , Immunization, Secondary , Macaca mulatta , Neutralization Tests , SAIDS Vaccines/genetics , SAIDS Vaccines/immunology , Semliki forest virus/genetics , Semliki forest virus/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/metabolism , Simian Immunodeficiency Virus/pathogenicity , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/metabolism , Viral Load
16.
Virol J ; 9: 160, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-22889373

ABSTRACT

BACKGROUND: An effective AIDS vaccine remains one of the highest priorities in HIV-research. Our recent study showed that vaccination of rhesus macaques with recombinant simian varicella virus (rSVV) vector - simian immunodeficiency virus (SIV) envelope and gag genes, induced neutralizing antibodies and cellular immune responses to SIV and also significantly reduced plasma viral loads following intravenous pathogenic challenge with SIVMAC251/CX1. FINDINGS: The purpose of this study was to define cellular immunological correlates of protection in rSVV-SIV vaccinated and SIV challenged animals. Immunofluorescent staining and multifunctional assessment of SIV-specific T-cell responses were evaluated in both Experimental and Control vaccinated animal groups. Significant increases in the proliferating CD4+ T-cell population and polyfunctional T-cell responses were observed in all Experimental-vaccinated animals compared with the Control-vaccinated animals. CONCLUSIONS: Increased CD4+ T-cell proliferation was significantly and inversely correlated with plasma viral load. Increased SIV-specific polyfunctional cytokine responses and increased proliferation of CD4+ T-cell may be crucial to control plasma viral loads in vaccinated and SIVMAC251/CX1 challenged macaques.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/genetics , Varicellovirus/genetics , Viral Load , Viremia/prevention & control , Animals , Cell Proliferation , Cytokines/metabolism , Macaca mulatta , Plasma/virology , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/genetics , Simian Immunodeficiency Virus/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
17.
J Med Primatol ; 46(4): 120, 2017 08.
Article in English | MEDLINE | ID: mdl-28748660
18.
J Med Primatol ; 46(4): 119, 2017 08.
Article in English | MEDLINE | ID: mdl-28748663
19.
Nat Med ; 11(12): 1293-4, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16273102

ABSTRACT

Pre-exposure oral prophylaxis with antiviral drugs is a potential method for preventing transmission of human immunodeficiency virus type 1 (HIV-1). We show that oral delivery of CMPD167, a small molecule that binds to the CCR5 coreceptor, for 10-14 d can protect a substantial proportion of macaques from vaginal infection with a CCR5-using virus (SHIV-162P3). The macaques that became infected despite receiving CMPD167 had reduced plasma viremia levels during the earliest stages of infection.


Subject(s)
CCR5 Receptor Antagonists , Macaca/virology , Pyrazoles/pharmacology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/drug effects , Vagina/virology , Valine/analogs & derivatives , Administration, Oral , Animals , Female , Pyrazoles/administration & dosage , Time Factors , Vagina/drug effects , Valine/administration & dosage , Valine/pharmacology , Viral Load
20.
Trends Microbiol ; 30(10): 948-958, 2022 10.
Article in English | MEDLINE | ID: mdl-35945120

ABSTRACT

'Infodemia' is a portmanteau between 'information' and 'epidemics', referring to wide and rapid accumulation and dissemination of information, misinformation, and disinformation about a given subject, such as a disease. As facts, rumors and fears mix and disperse, the misinfodemic creates loud background noise, preventing the general public from discerning between accurate and false information. We compared and contrasted key elements of the AIDS and COVID-19 misinfodemics, to identify common features, and, based on experience with the AIDS pandemic, recommend actions to control and reverse the SARS-CoV-2 misinfodemic that contributed to erode the trust between the public and scientists and governments and has created barriers to control of COVID-19. As pandemics emerge and evolve, providing robust responses to future misinfodemics must be a priority for society and public health.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 , COVID-19/epidemiology , Communication , Humans , Pandemics/prevention & control , Public Health , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL