Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Phytopathology ; 114(7): 1680-1688, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38648112

ABSTRACT

In 2014, Physostegia chlorotic mottle virus (PhCMoV) was discovered in Austria in Physostegia virginiana. Subsequent collaborative efforts established a link between the virus and severe fruit symptoms on important crops such as tomato, eggplant, and cucumber across nine European countries. Thereafter, specific knowledge gaps, which are crucial to assess the risks PhCMoV can pose for production and how to manage it, needed to be addressed. In this study, the transmission, prevalence, and disease severity of PhCMoV were examined. This investigation led to the identification of PhCMoV presence in a new country, Switzerland. Furthermore, our research indicates that the virus was already present in Europe 30 years ago. Bioassays demonstrated PhCMoV can result in up to 100% tomato yield losses depending on the phenological stage of the plant at the time of infection. PhCMoV was found to naturally infect 12 new host plant species across eight families, extending its host range to 21 plant species across 15 plant families. The study also identified a polyphagous leafhopper (genus Anaceratagallia) as a natural vector of PhCMoV. Overall, PhCMoV was widespread in small-scale diversified vegetable farms in Belgium where tomato is grown in soil under tunnels, occurring in approximately one-third of such farms. However, outbreaks were sporadic and were associated at least once with the cultivation in tomato tunnels of perennial plants that can serve as a reservoir host for the virus and its vector. To further explore this phenomenon and manage the virus, studying the ecology of the vector would be beneficial.


Subject(s)
Hemiptera , Plant Diseases , Vegetables , Plant Diseases/virology , Hemiptera/virology , Vegetables/virology , Solanum lycopersicum/virology , Animals , Switzerland , Insect Vectors/virology , Crops, Agricultural/virology , Host Specificity
2.
BMC Biol ; 21(1): 217, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833740

ABSTRACT

BACKGROUND: High-throughput sequencing (HTS) technologies completed by the bioinformatic analysis of the generated data are becoming an important detection technique for virus diagnostics. They have the potential to replace or complement the current PCR-based methods thanks to their improved inclusivity and analytical sensitivity, as well as their overall good repeatability and reproducibility. Cross-contamination is a well-known phenomenon in molecular diagnostics and corresponds to the exchange of genetic material between samples. Cross-contamination management was a key drawback during the development of PCR-based detection and is now adequately monitored in routine diagnostics. HTS technologies are facing similar difficulties due to their very high analytical sensitivity. As a single viral read could be detected in millions of sequencing reads, it is mandatory to fix a detection threshold that will be informed by estimated cross-contamination. Cross-contamination monitoring should therefore be a priority when detecting viruses by HTS technologies. RESULTS: We present Cont-ID, a bioinformatic tool designed to check for cross-contamination by analysing the relative abundance of virus sequencing reads identified in sequence metagenomic datasets and their duplication between samples. It can be applied when the samples in a sequencing batch have been processed in parallel in the laboratory and with at least one specific external control called Alien control. Using 273 real datasets, including 68 virus species from different hosts (fruit tree, plant, human) and several library preparation protocols (Ribodepleted total RNA, small RNA and double-stranded RNA), we demonstrated that Cont-ID classifies with high accuracy (91%) viral species detection into (true) infection or (cross) contamination. This classification raises confidence in the detection and facilitates the downstream interpretation and confirmation of the results by prioritising the virus detections that should be confirmed. CONCLUSIONS: Cross-contamination between samples when detecting viruses using HTS (Illumina technology) can be monitored and highlighted by Cont-ID (provided an alien control is present). Cont-ID is based on a flexible methodology relying on the output of bioinformatics analyses of the sequencing reads and considering the contamination pattern specific to each batch of samples. The Cont-ID method is adaptable so that each laboratory can optimise it before its validation and routine use.


Subject(s)
RNA, Viral , Viruses , Humans , RNA, Viral/analysis , RNA, Viral/genetics , Reproducibility of Results , Viruses/genetics , Metagenomics/methods , Computational Biology , High-Throughput Nucleotide Sequencing/methods
3.
Int Microbiol ; 26(2): 397-409, 2023 May.
Article in English | MEDLINE | ID: mdl-36484909

ABSTRACT

The current plastic pollution throughout the world is a rising concern that demands the optimization of biodegradation processes. One avenue for this is to identify plastic-degrading bacteria and associated enzymes from the gut bacteria of insect models such as Tenebrio molitor, Plodia interpunctella or Galleria mellonella that have the ability to ingest and rapidly degrade polyethylene. Therefore, this study takes part in understanding the role of the gut bacteria by investigating G. mellonella as a biological model feeding with a diet based on honeybee wax mixed or not with low-density polyethylene. Gut microbiome was analyzed by high throughput 16S rRNA sequencing, and Enterococcaceae and Oxalobacteraceae were found to be the major bacterial families. Compared to the control, the supplementation of low-density polyethylene did not cause significant modification of the bacterial microbiota at community and taxa levels, suggesting bacterial microbiome resilience. The bacterial proteome analysis of gut contents was encouraging for the identification of plastic degrading enzymes such as the phenylacetaldehyde dehydrogenase which participate in styrene degradation. This study allowed a better characterization of the gut bacteria of G. mellonella and provided a basis for the further study of biodegradation of polyethylene based on the bacterial microbiota from insect guts.


Subject(s)
Moths , Polyethylene , Humans , Bees/genetics , Animals , Larva/metabolism , Larva/microbiology , Polyethylene/metabolism , RNA, Ribosomal, 16S/genetics , Moths/genetics , Moths/metabolism , Moths/microbiology , Plastics/metabolism , Bacteria/genetics , Bacteria/metabolism , Diet , Dietary Supplements
4.
Phytopathology ; 113(9): 1729-1744, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37399026

ABSTRACT

High-throughput sequencing (HTS) and sequence mining tools revolutionized virus detection and discovery in recent years, and implementing them with classical plant virology techniques results in a powerful approach to characterize viruses. An example of a virus discovered through HTS is Solanum nigrum ilarvirus 1 (SnIV1) (Bromoviridae), which was recently reported in various solanaceous plants from France, Slovenia, Greece, and South Africa. It was likewise detected in grapevines (Vitaceae) and several Fabaceae and Rosaceae plant species. Such a diverse set of source organisms is atypical for ilarviruses, thus warranting further investigation. In this study, modern and classical virological tools were combined to accelerate the characterization of SnIV1. Through HTS-based virome surveys, mining of sequence read archive datasets, and a literature search, SnIV1 was further identified from diverse plant and non-plant sources globally. SnIV1 isolates showed relatively low variability compared with other phylogenetically related ilarviruses. Phylogenetic analyses showed a distinct basal clade of isolates from Europe, whereas the rest formed clades of mixed geographic origin. Furthermore, systemic infection of SnIV1 in Solanum villosum and its mechanical and graft transmissibility to solanaceous species were demonstrated. Near-identical SnIV1 genomes from the inoculum (S. villosum) and inoculated Nicotiana benthamiana were sequenced, thus partially fulfilling Koch's postulates. SnIV1 was shown to be seed-transmitted and potentially pollen-borne, has spherical virions, and possibly induces histopathological changes in infected N. benthamiana leaf tissues. Overall, this study provides information to better understand the diversity, global presence, and pathobiology of SnIV1; however, its possible emergence as a destructive pathogen remains uncertain. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Ilarvirus , Solanum , Phylogeny , Plant Diseases , Nicotiana
5.
Phytopathology ; 113(2): 345-354, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35972890

ABSTRACT

Members of the genus Luteovirus are responsible for economically destructive plant diseases worldwide. Over the past few years, three luteoviruses infecting Prunus trees have been characterized. However, the biological properties, prevalence, and genetic diversity of those viruses have not yet been studied. High-throughput sequencing of samples of various wild, cultivated, and ornamental Prunus species enabled the identification of four novel species in the genus Luteovirus for which we obtained complete or nearly complete genomes. Additionally, we identified another new putative species recovered from Sequence Read Archive data. Furthermore, we conducted a survey on peach-infecting luteoviruses in eight European countries. Analyses of 350 leaf samples collected from germplasm, production orchards, and private gardens showed that peach-associated luteovirus (PaLV), nectarine stem pitting-associated virus (NSPaV), and a novel luteovirus, peach-associated luteovirus 2 (PaLV2), are present in all countries; the most prevalent virus was NSPaV, followed by PaLV. The genetic diversity of these viruses was also analyzed. Moreover, the biological indexing on GF305 peach indicator plants demonstrated that PaLV and PaLV2, like NSPaV, are transmitted by graft at relatively low rates. No clear viral symptoms have been observed in either graft-inoculated GF305 indicators or different peach tree varieties observed in an orchard. The data generated during this study provide a broader overview of the genetic diversity, geographical distribution, and prevalence of peach-infecting luteoviruses and suggest that these viruses are likely asymptomatic in peach under most circumstances.


Subject(s)
Luteovirus , Prunus , Viruses , Luteovirus/genetics , Plant Diseases , Viruses/genetics , High-Throughput Nucleotide Sequencing
6.
Plant Dis ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085240

ABSTRACT

In 2020, symptoms of putative viral origin were observed on 7% of tomatoes in an organic vegetable farm in Belgium (deformed uneven ripened fruits, vein clearing, mosaic and purple leaves, stunted plants). The leaves of twenty symptomatic plants were collected, pooled and screened for viruses using high throughput sequencing technologies (HTS) on Illumina NextSeq500 following a virion-associated nucleic acid (VANA) protocol (Temple et al., 2021, Be_SL1). In total, 3,665,498 reads (PE150) were generated. Bioinformatic analyses (denovo assembly, tblastx search on NCBI and mapping) using Geneious Prime® 2020.1.2 revealed the presence of three viruses known to infect tomatoes: Physostegia chlorotic mottle virus (PhCMoV), 547,142 reads map on NC_055466, potato virus Y (PVY), 4056 reads map on MW595184, and melon chlorotic spot virus (MeCSV), 55 reads mapped to six out of the eight different MeCSV segments (NC_040448-55). Tomato plants have already been artificially inoculated by MeCSV (Lecoq et al., 2019) but this detection (confirmed by independent RT-PCR on the pooled sample) is the first one in natural condition on farm. The high prevalence of symptoms triggered the research of alternative perennial hosts that can serve as a reservoir during inter-cropping season. One plant of Rumex acetosa showing vein clearing (CT-122) was collected in the same greenhouse the year after. Total RNA was extracted, followed by ribodepletion, and Illumina HTS using the protocol described in Temple et al., (2021) for Be_GP1. In total, 4,549,721 PE150 reads were obtained and bioinformatic analyses confirmed the presence of MeCSV (8,816 reads mapped on eight RNA segments NC_040448-55 with an average 96,52% coverage of the reference sequences, supplementary table 1) and suggested the presence of an unclassified partitivirus. Consensus sequences were extracted for each segment of MeCSV (OQ818038-45) and showed between 83% and 87% of nucleotide identity with the reference sequences NC_040448-55. RNA1 segment was used to design MeCSV-specific RT-PCR primers for detection (MeCSV-125F 5'-TTTAAGGCCAGATCCAGAGGTTC-3'/ MeCSV-498R 5'-TGGATGTGACAACCTGGTAGTAC-3'). Thereafter, in July 2022, 42 R. acetosa plants were collected in the same greenhouse. Among them, seven plants showed vein clearing, two showed yellowing with necrosis, two exhibited yellowing and vein clearing (Supplementary figure 1), and one showed mosaic. The 42 plants were subjected to RNA extraction and RT-PCR for MeCSV (Supplementary figure 2) and PhCMoV detection. MeCSV was detected in 13 plants (two asymptomatic plants and all the symptomatic plants except the one exhibiting mosaic where PhCMoV was detected). PhCMoV was also detected in three plants with vein clearing, one with yellowing and one of the two asymptomatic plants infected by MeCSV. Our results report the first detection of MeCSV in R. acetosa and the first detection of MeCSV in Belgium. In addition, according to the hierarchical approach for assessing causal relationships in plant virology (Fox et al., 2020), a preliminary association was observed between symptoms and MeCSV detection [6% prevalence on asymptomatic plants and 92% prevalence on diseased plants (from which seven symptomatic samples were not co-infected by PhCMoV)]. Symptom causality should be further investigated but this results are important for disease management because they suggested that cultivated perennial R. acetosa may serve as a reservoir for two emergent plant viruses (PhCMoV and MeCSV) (Lecoq et al., 2019, Temple et al., 2021).

7.
Plant Dis ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37093167

ABSTRACT

Lettuce ring necrosis virus (LRNV), genus Ophiovirus, was detected by the Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP) in June and November of 2021 in two samples of chili pepper fruits (Capsicum spp.), both in mixed infection with other viruses. The first sample originated from a production site in Belgium (Sample ID: 40009704) and the second from a production site in the Netherlands (Sample ID: 41115269). One of the fruits of 40009704 showed a light purple circular pattern, while fruits from 41115269 showed colored (ring)spots. The samples were analyzed using Illumina sequencing on a NovaSeq 6000 platform (PE 150) as described previously (Hammond et al., 2021), obtaining 39.9M and 22.8M total reads for 40009704 and 41115269. The corresponding sequence read archives (SRA) were deposited in the NCBI SRA database under BioProject accession number PRJNA917231. From both samples, the nearly complete genome of LRNV (RNA1-4) was obtained and deposited in GenBank (40009704, OQ160823- OQ160826 (7616, 1799, 1502, 1382 nt, mapped reads: 40K, 12K, 114K, 12K , average read coverage (ARC): 0.8K, 0.9K, 11.3K and 1.1K); 41115269, OQ160827- OQ160830 (7616, 1801, 1518, 1389 nt, mapped reads: 112K, 7K, 357K, 55K reads, ARC: 2.2K, 0.6K, 34K and 5.8K)). The shared sequence identities with the Genbank reference sequence of LRNV (NC_006051-NC_006051) were 99.2 and 99.2% (RNA1), 99.1 and 99.1% (RNA2), 98.3 and 98.8% (RNA3), 99.0 and 98.9% (RNA4) for 40009704 and 41115269 respectively. The shared sequence identities between 40009704 and 41115269 were 99.9 (RNA1), 99.0 (RNA2), 99.1 (RNA3) and 99.5% (RNA4). In addition to LRNV, the ophiovirus ranunculus white mottle virus (RWMV) was detected in both samples (OQ160831-OQ160834; OQ160835-OQ160838), while the tobamovirus pepper mild mottle virus (PMMoV) was present in the fruits of 41115269 (OQ160839). Since RWMV has been associated with leaf symptoms in pepper (Gambley et al., 2019; Rivarez et al., 2022) and the colored (ring)spots of 41115269 were very similar to reported symptoms of PMMoV-infected pepper fruits (Martínez-Ochoa et al., 2003), it remains unclear whether LRNV contributed to the observed symptoms. Additionally, LRNV was detected in tomato (Solanum lycopersicum) in Belgium in 2020. In the frame of a metagenomic survey using Virion-Associated Nucleic Acids (VANA)-based protocol (Maclot et al., 2021) on a Nextseq 500 platform (PE 150), partial genome sequences of LRNV were detected in two pools of tomato plants. One pool was made of 44 asymptomatic cultivars from a non-commercial grower (one sample per cultivar) yielding 118K total reads of which 84, 59, 335, and 18 reads mapped on RNA1, 2, 3, and 4, covering 35%, 69%, 100% and 55% of the genome, respectively. The other pool consisted of 15 plants from one cultivar from a production site yielding 3.1M total reads of which 6 and 5 reads mapped on RNA3 and 4, respectively. The detection of LRNV was confirmed for both pooled samples using the real-time RT-PCR method, targeting the CP gene, as described by Maachi et al. (2021). To our knowledge this is the first report of LRNV in pepper anywhere in the world. Additionally, although the disease lettuce ring necrosis in lettuce (Lactuca sativa) has been described in Belgium and the Netherlands before the causal agent was identified (Bos & Huijberts, 1996), this is the first official report of this virus in Belgium and the Netherlands. This publication resulted from pre-publication data sharing of sequences and biological data among plant virologists to provide more context to two independent findings (Hammond et al., 2021).

8.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373026

ABSTRACT

Phosphorus (P) is the second most important macronutrient for crop growth and a limiting factor in food production. Choosing the right P fertilizer formulation is important for crop production systems because P is not mobile in soils, and placing phosphate fertilizers is a major management decision. In addition, root microorganisms play an important role in helping phosphorus fertilization management by regulating soil properties and fertility through different pathways. Our study evaluated the impact of two phosphorous formulations (polyphosphates and orthophosphates) on physiological traits of wheat related to yield (photosynthetic parameters, biomass, and root morphology) and its associated microbiota. A greenhouse experiment was conducted using agricultural soil deficient in P (1.49%). Phenotyping technologies were used at the tillering, stem elongation, heading, flowering, and grain-filling stages. The evaluation of wheat physiological traits revealed highly significant differences between treated and untreated plants but not between phosphorous fertilizers. High-throughput sequencing technologies were applied to analyse the wheat rhizosphere and rhizoplane microbiota at the tillering and the grain-filling growth stages. The alpha- and beta-diversity analyses of bacterial and fungal microbiota revealed differences between fertilized and non-fertilized wheat, rhizosphere, and rhizoplane, and the tillering and grain-filling growth stages. Our study provides new information on the composition of the wheat microbiota in the rhizosphere and rhizoplane during growth stages (Z39 and Z69) under polyphosphate and orthophosphate fertilization. Hence, a deeper understanding of this interaction could provide better insights into managing microbial communities to promote beneficial plant-microbiome interactions for P uptake.


Subject(s)
Microbiota , Phosphorus , Phosphorus/metabolism , Fertilizers , Triticum/metabolism , Rhizosphere , Microbiota/physiology , Soil , Polyphosphates/metabolism , Soil Microbiology
9.
Arch Virol ; 167(11): 2355-2357, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35857149

ABSTRACT

We report the complete genome sequence of a novel member of the genus Vitivirus (family Betaflexiviridae, subfamily Trivirinae) infecting pineapple. The complete genome sequence of this virus was obtained from total RNA extracted from pineapple leaf samples collected in Reunion Island, using a combination of high-throughput sequencing technologies. The viral genome is 6,757 nt long, excluding the poly(A) tail, and shares all the hallmarks of vitiviruses. Phylogenetic analysis performed on the replication-associated protein and capsid protein gene sequences unambiguously place this new virus, for which we propose the name "pineapple virus A", in the genus Vitivirus.


Subject(s)
Ananas , Flexiviridae , Capsid Proteins/genetics , Flexiviridae/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing , Open Reading Frames , Phylogeny , Plant Diseases , RNA , RNA, Messenger , RNA, Viral/genetics , Reunion
10.
Phytopathology ; 112(11): 2253-2272, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35722889

ABSTRACT

Over the last decade, viral metagenomic studies have resulted in the discovery of thousands of previously unknown viruses. These studies are likely to play a pivotal role in obtaining an accurate and robust understanding of how viruses affect the stability and productivity of ecosystems. Among the metagenomics-based approaches that have been developed since the beginning of the 21st century, shotgun metagenomics applied specifically to virion-associated nucleic acids (VANA) has been used to disentangle the diversity of the viral world. We summarize herein the results of 24 VANA-based studies, focusing on plant and insect samples conducted over the last decade (2010 to 2020). Collectively, viruses from 85 different families were reliably detected in these studies, including capsidless RNA viruses that replicate in fungi, oomycetes, and plants. Finally, strengths and weaknesses of the VANA approach are summarized and perspectives of applications in detection, epidemiological surveillance, environmental monitoring, and ecology of plant viruses are provided. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Nucleic Acids , Plant Viruses , Metagenomics/methods , Ecosystem , Plant Diseases , Plant Viruses/genetics , Virion/genetics , Plants
11.
Plant Dis ; 106(3): 835-845, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34546772

ABSTRACT

Little cherry virus 2 (LChV-2, genus Ampelovirus) is considered to be the main causal agent of the economically damaging little cherry disease, which can only be controlled by removal of infected trees. The widespread viral disease of sweet cherry (Prunus avium L.) is affecting the survival of long-standing orchards in North America and Europe, hence the dire need for an early and accurate diagnosis to establish a sound disease control strategy. The endemic presence of LChV-2 is mainly confirmed using laborious time-consuming reverse-transcription (RT-PCR). A rapid reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay targeting a conserved region of the coat protein was developed and compared with conventional RT-PCR for the specific detection of LChV-2. This affordable assay, combined with a simple RNA extraction, deploys desirable characteristics such as higher ability for faster (<15 min), more analytically sensitive (100-fold), and robust broad-range diagnosis of LChV-2 isolates from sweet cherry, ornamental flowering cherry displaying heterogenous viral etiology and, for the first time, newly identified potential insect vectors. Moreover, use of Sanger and total RNA high-throughput sequencing as complementary metaviromics approaches confirmed the LChV-2 RT-LAMP detection of divergent LChV-2 isolates in new hosts and the relationship of their whole-genome was exhaustively inferred using maximum-likelihood phylogenomics. This entails unprecedented critical understanding of a novel evolutionary clade further expanding LChV-2 viral diversity. In conclusion, this highly effective diagnostic platform facilitates strategical support for early in-field testing to reliably prevent dissemination of new LChV-2 outbreaks from propagative plant stocks or newly postulated insect vectors. Validated results and major advantages are herein thoroughly discussed, in light of the knowledge required to increase the potential accuracy of future diagnostics and the essential epidemiological considerations to proactively safeguard cherries and Prunus horticultural crop systems from little cherry disease.


Subject(s)
Closteroviridae , RNA, Viral , High-Throughput Nucleotide Sequencing , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Phylogeny , Plant Diseases , RNA, Viral/genetics
12.
Plant Dis ; 106(11): 2797-2807, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35394335

ABSTRACT

Application of high throughput sequencing (HTS) technologies enabled the first identification of Physostegia chlorotic mottle virus (PhCMoV) in 2018 in Austria. Subsequently, PhCMoV was detected in Germany and Serbia on tomatoes showing severe fruit mottling and ripening anomalies. We report here how prepublication data-sharing resulted in an international collaboration across eight laboratories in five countries, enabling an in-depth characterization of PhCMoV. The independent studies converged toward its recent identification in eight additional European countries and confirmed its presence in samples collected 20 years ago (2002). The natural plant host range was expanded from two to nine species across seven families, and we confirmed the association of PhCMoV presence with severe fruit symptoms on economically important crops such as tomato, eggplant, and cucumber. Mechanical inoculations of selected isolates in the greenhouse established the causality of the symptoms on a new indexing host range. In addition, phylogenetic analysis showed a low genomic variation across the 29 near-complete genome sequences available. Furthermore, a strong selection pressure within a specific ecosystem was suggested by nearly identical sequences recovered from different host plants through time. Overall, this study describes the European distribution of PhCMoV on multiple plant hosts, including economically important crops on which the virus can cause severe fruit symptoms. This work demonstrates how to efficiently improve knowledge on an emergent pathogen by sharing HTS data and provides a solid knowledge foundation for further studies on plant rhabdoviruses.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Host Specificity , Solanum lycopersicum , Phylogeny , Plant Diseases , Ecosystem , Serbia
13.
Phytopathology ; 111(3): 570-581, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33571022

ABSTRACT

Forest diseases caused by invasive fungal pathogens are becoming more common, sometimes with dramatic consequences to forest ecosystems. The development of early detection systems is necessary for efficient surveillance and to mitigate the impact of invasive pathogens. Windborne spores are an important pathway for introduction of fungal pathogens into new areas; the design of spore trapping devices adapted to forests, capable of collecting different types of spores, and aligned with development of efficient molecular methods for detection of the pathogen, should help forest managers anticipate new disease outbreaks. Two types of Rotorod samplers were evaluated for the collection of airborne inoculum of forest fungal pathogens with a range of spore sizes in five forest types. Detection was by specific quantitative PCR (qPCR) and by high-throughput sequencing (HTS) of amplified internal transcribed spacer sequences using a new bioinformatic pipeline, FungiSearch, developed for diagnostic purposes. Validation of the pipeline was conducted on mock communities of 10 fungal species belonging to different taxa. Although the sensitivity of the new HTS pipeline was lower than the specific qPCR, it was able to detect a wide variety of fungal pathogens. FungiSearch is easy to use, and the reference database is updatable, making the tool suitable for rapid identification of new pathogens. This new approach combining spore trapping and HTS detection is promising as a diagnostic tool for invasive fungal pathogens.


Subject(s)
Ecosystem , Plant Diseases , Fungi/genetics , High-Throughput Nucleotide Sequencing , Real-Time Polymerase Chain Reaction , Spores, Fungal
14.
Phytopathology ; 111(10): 1782-1789, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33703919

ABSTRACT

Citrus impietratura disease (CID) is a graft transmissible, virus-like disease observed in old-line citrus trees; its characteristic symptom is the appearance of gum in the albedo of the affected fruits. To identify the causal agent of the disease, high-throughput sequencing (HTS) was performed on symptomatic orange fruits. The analysis of the obtained data revealed in all samples mixed infections of viroids commonly found in citrus trees together with the recently described citrus virus A (CiVA). Examination of additional symptomatic fruits with conventional reverse transcription PCR led to the identification of a single CiVA infection in one tree, which was verified by HTS. Indexing of the single CiVA-infected tree on indicator plants resulted in the appearance of characteristic symptoms in the leaves that were correlated with virus accumulation. Moreover, a comparative analysis among symptomatic and asymptomatic fruits derived from the same trees was performed and included the single CiVA-infected orange tree. The analysis revealed a positive correlation between the appearance of symptoms and the accumulation of CiVA RNAs. To facilitate CiVA detection during certification programs of propagation material, a quantitative RT-PCR targeting the movement protein of the virus was developed and evaluated for reliable and sensitive detection of the virus. To the best of our knowledge this is the first study that associates CiVA with the appearance of CID symptoms.


Subject(s)
Citrus , Plant Diseases
15.
Phytopathology ; 111(6): 1051-1058, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33084526

ABSTRACT

Although chestnut mosaic disease (ChMD) was described several decades ago, its etiology is still not clear. Using classical approaches and high-throughput sequencing (HTS) techniques, we identified a novel Badnavirus that is a strong etiological candidate for ChMD. Two disease sources from Italy and France were submitted to HTS-based viral indexing. Total RNAs were extracted, ribodepleted, and sequenced on an Illumina NextSeq500 (2 × 150 nt or 2 × 75 nt). In each source, we identified a single contig of ≈7.2 kb that corresponds to a complete circular viral genome and shares homologies with various badnaviruses. The genomes of the two isolates have an average nucleotide identity of 90.5%, with a typical badnaviral genome organization comprising three open reading frames. Phylogenetic analyses and sequence comparisons showed that this virus is a novel species; we propose the name Chestnut mosaic virus (ChMV). Using a newly developed molecular detection test, we systematically detected the virus in symptomatic graft-inoculated indicator plants (chestnut and American oak) as well in chestnut trees presenting typical ChMD symptoms in the field (100 and 87% in France and Italy surveys, respectively). Datamining of publicly available chestnut sequence read archive transcriptomic data allowed the reconstruction of two additional complete ChMV genomes from two Castanea mollissima sources from the United States as well as ChMV detection in C. dentata from the United States. Preliminary epidemiological studies performed in France and central eastern Italy showed that ChMV has a high incidence in some commercial orchards and low within-orchard genetic diversity.


Subject(s)
Badnavirus , Fagaceae/virology , Plant Diseases/virology , Badnavirus/genetics , Genome, Viral/genetics , Open Reading Frames/genetics , Phylogeny
16.
Virologie (Montrouge) ; 25(1): 29-42, 2021 Feb 01.
Article in French | MEDLINE | ID: mdl-33650495

ABSTRACT

Plant virus ecology began to be explored at the end of the 19th century. Since then, major advances have revealed complex virus-host-vector interactions in a variety of environments. These advances have been accelerated by development of new technologies for virus detection and characterization, the latest of which being high-throughput sequencing (HTS). HTS technologies have proved to be effective for non-targeted characterization of all or nearly all viruses present in a sample without requiring prior information about virus identity, as would be needed for virus-targeted tests. Phytoviromic studies have thus made important advances, including characterization of the complex interactions between phytovirus dynamics and the structure of multi-species host communities, and documentation of the effects of anthropogenic ecosystem simplification on plant virus emergence and diversity. However, such studies must overcome challenges at every stage, from plant sampling to bioinformatics analysis. This review summarizes major advances in plant virus ecology, in association with technological developments, and presents key considerations for use of HTS in the study of the ecology of phytovirus communities.


Subject(s)
Ecosystem , Plant Viruses , DNA Viruses , Ecology , Nucleotides , Plant Viruses/genetics
17.
BMC Genomics ; 21(1): 439, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32590936

ABSTRACT

BACKGROUND: In the past several years, the use of resistant starch (RS) as prebiotic has extensively been studied in pigs, and this mostly in the critical period around weaning. RS is believed to exert beneficial effects on the gastrointestinal tract mainly due to higher levels of short chain fatty acids (SCFAs) and an improved microbiota profile. In this study, sows were fed digestible starch (DS) or RS during late gestation and lactation and the possible maternal effect of RS on the overall health of the progeny was assessed. Since RS is also described to have a positive effect on metabolism, and to investigate a metabolic programming of the progeny, half of the piglets per maternal diet were assigned to a high fat diet from weaning on to 10 weeks after. RESULTS: No bodyweight differences were found between the four experimental piglet groups. The high fat diet did however impact back fat thickness and meat percentage whereas maternal diet did not influence these parameters. The impact of the high fat diet was also reflected in higher levels of serum cholesterol. No major differences in microbiota could be distinguished, although higher levels of SCFA were seen in the colon of piglets born from RS fed sows, and some differences in SCFA production were observed in the caecum, mainly due to piglet diet. RNA-sequencing on liver and colon scrapings revealed minor differences between the maternal diet groups. Merely a handful of genes was differentially expressed between piglets from DS and RS sows, and network analysis showed only one significant cluster of genes in the liver due to the maternal diet that did not point to meaningful biological pathways. However, the high fat diet resulted in liver gene clusters that were significantly correlated with piglet diet, of which one is annotated for lipid metabolic processes. These clusters were not correlated with maternal diet. CONCLUSIONS: There is only a minor impact of maternal dietary RS on the progeny, reflected in SCFA changes. A high fat diet given to the progeny directly evokes metabolic changes in the liver, without any maternal programming by a RS diet.


Subject(s)
Cecum/metabolism , Cholesterol/blood , Fatty Acids, Volatile/blood , Gene Expression Profiling/veterinary , Liver/metabolism , Resistant Starch/administration & dosage , Animals , Animals, Newborn , Body Weight/drug effects , Diet, High-Fat , Female , Gene Regulatory Networks/drug effects , Maternal Nutritional Physiological Phenomena , Pregnancy , Resistant Starch/pharmacology , Sequence Analysis, RNA , Swine , Weaning
18.
Mol Biol Rep ; 47(1): 211-224, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31643044

ABSTRACT

Plasmodium falciparum is transmitted by mosquitoes from the Anopheles gambiae sensu lato (s.l) species complex and is responsible for severe forms of malaria. The composition of the mosquitoes' microbiota plays a role in P. falciparum transmission, so we studied midgut bacterial communities of An. gambiae s.l from Burkina Faso. DNA was extracted from 17 pools of midgut of mosquitoes from the Anopheles gambiae complex from six localities in three climatic areas, including cotton-growing and cotton-free localities to include potential differences in insecticide selection pressure. The v3-v4 region of the 16S rRNA gene was targeted and sequenced using Illumina Miseq (2 × 250 nt). Diversity analysis was performed using QIIME and R software programs. The major bacterial phylum was Proteobacteria (97.2%) in all samples. The most abundant genera were Enterobacter (32.8%) and Aeromonas (29.8%), followed by Pseudomonas (11.8%), Acinetobacter (5.9%) and Thorsellia (2.2%). No statistical difference in operational taxonomic units (OTUs) was found (Kruskal-Wallis FDR-p > 0.05) among the different areas, fields or localities. Richness and diversity indexes (observed OTUs, Chao1, Simpson and Shannon indexes) showed significant differences in the cotton-growing fields and in the agroclimatic zones, mainly in the Sudano-Sahelian area. OTUs from seven bacterial species that mediate refractoriness to Plasmodium infection in An. gambiae s.l were detected. The beta diversity analysis did not show any significant difference. Therefore, a same control strategy of using bacterial species refractoriness to Plasmodium to target mosquito midgut bacterial community and affect their fitness in malaria transmission may be valuable tool for future malaria control efforts in Burkina Faso.


Subject(s)
Anopheles/microbiology , Bacteria/classification , Gastrointestinal Microbiome , Animals , Anopheles/parasitology , Bacteria/genetics , Burkina Faso , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , Host-Parasite Interactions/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Intestines/microbiology , Intestines/pathology , Microbial Interactions/physiology , Phylogeny , Plasmodium falciparum/physiology , RNA, Ribosomal, 16S/analysis , Selection, Genetic/drug effects
19.
Phytopathology ; 110(1): 68-79, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31631806

ABSTRACT

High-throughput sequencing technologies were used to identify plant viruses in cereal samples surveyed from 2012 to 2017. Fifteen genome sequences of a tenuivirus infecting wheat, oats, and spelt in Estonia, Norway, and Sweden were identified and characterized by their distances to other tenuivirus sequences. Like most tenuiviruses, the genome of this tenuivirus contains four genomic segments. The isolates found from different countries shared at least 92% nucleotide sequence identity at the genome level. The planthopper Javesella pellucida was identified as a vector of the virus. Laboratory transmission tests using this vector indicated that wheat, oats, barley, rye, and triticale, but none of the tested pasture grass species (Alopecurus pratensis, Dactylis glomerata, Festuca rubra, Lolium multiflorum, Phleum pratense, and Poa pratensis), are susceptible. Taking into account the vector and host range data, the tenuivirus we have found most probably represents European wheat striate mosaic virus first identified about 60 years ago. Interestingly, whereas we were not able to infect any of the tested cereal species mechanically, Nicotiana benthamiana was infected via mechanical inoculation in laboratory conditions, displaying symptoms of yellow spots and vein clearing evolving into necrosis, eventually leading to plant death. Surprisingly, one of the virus genome segments (RNA2) encoding both a putative host systemic movement enhancer protein and a putative vector transmission factor was not detected in N. benthamiana after several passages even though systemic infection was observed, raising fundamental questions about the role of this segment in the systemic spread in several hosts.


Subject(s)
Genome, Viral , Mosaic Viruses , Plant Viruses , Animals , Edible Grain/virology , Genome, Viral/genetics , Hemiptera/virology , Mosaic Viruses/genetics , Norway , Plant Diseases/virology , Plant Viruses/genetics , Sweden
20.
Plant Dis ; 104(10): 2713-2719, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32716275

ABSTRACT

Apple mosaic disease is widespread in the major apple-producing areas in China and is frequently associated with the presence of the newly identified Apple necrotic mosaic virus (ApNMV), belonging to subgroup 3 of Ilarvirus genus in the family of Bromoviridae. Mosaic symptoms were also observed in a hawthorn tree. Deep sequencing revealed the hawthorn tree with mosaic symptom was infected by ApNMV, which was confirmed by RT-PCR. The complete nucleotide sequences of RNA1 (3,378 nt), RNA2 (2,778 nt), and RNA3 (1,917 nt) of ApNMV from the hawthorn were obtained, sharing 93.8 to 96.8%, 89.7 to 96.1%, and 89.8 to 94.6% nucleotide identities with those from apples and crabapples, respectively. Two hypervariable regions were found, which showed 59.2 to 85.7% and 64.0 to 89.3% sequence identities at position 142 to 198 aa and at position 780 to 864 aa in the POL protein, respectively, between the hawthorn isolate and other isolates (apple, crabapple). A grafting test demonstrated that ApNMV was easily transmissible from hawthorns to apple trees, with severe chlorosis, yellowing, mosaic, curling, and necrosis. In addition, a total of 11,685 hawthorn trees were surveyed for the incidence of mosaic disease from five provinces in China, and only six were found showing typical mosaic symptoms. A total of 145 individual trees (six symptomatic, 68 asymptomatic, and 71 other symptoms) were tested for the presence or absence of ApNMV by RT-PCR. Among them, six symptomatic, four asymptomatic, and 10 other symptomatic trees tested positive for ApNMV. Taken together, these results demonstrated that the hawthorn tree was identified as a new natural host for ApNMV with a relatively low frequency (13.8%, 20 out of 145) in the main producing areas, and it was likely to be the causal pathogen of hawthorn mosaic disease.


Subject(s)
Crataegus , Mosaic Viruses , China , Phylogeny , Plant Diseases , RNA-Seq , Trees
SELECTION OF CITATIONS
SEARCH DETAIL