Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Immunol ; 24(8): 1318-1330, 2023 08.
Article in English | MEDLINE | ID: mdl-37308665

ABSTRACT

Immune checkpoint blockade (ICB) targeting PD-1 and CTLA-4 has revolutionized cancer treatment. However, many cancers do not respond to ICB, prompting the search for additional strategies to achieve durable responses. G-protein-coupled receptors (GPCRs) are the most intensively studied drug targets but are underexplored in immuno-oncology. Here, we cross-integrated large singe-cell RNA-sequencing datasets from CD8+ T cells covering 19 distinct cancer types and identified an enrichment of Gαs-coupled GPCRs on exhausted CD8+ T cells. These include EP2, EP4, A2AR, ß1AR and ß2AR, all of which promote T cell dysfunction. We also developed transgenic mice expressing a chemogenetic CD8-restricted Gαs-DREADD to activate CD8-restricted Gαs signaling and show that a Gαs-PKA signaling axis promotes CD8+ T cell dysfunction and immunotherapy failure. These data indicate that Gαs-GPCRs are druggable immune checkpoints that might be targeted to enhance the response to ICB immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Signal Transduction , Mice, Transgenic , Immunotherapy , Tumor Microenvironment
2.
Nucleic Acids Res ; 50(W1): W598-W610, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35639758

ABSTRACT

In this study we show that protein language models can encode structural and functional information of GPCR sequences that can be used to predict their signaling and functional repertoire. We used the ESM1b protein embeddings as features and the binding information known from publicly available studies to develop PRECOGx, a machine learning predictor to explore GPCR interactions with G protein and ß-arrestin, which we made available through a new webserver (https://precogx.bioinfolab.sns.it/). PRECOGx outperformed its predecessor (e.g. PRECOG) in predicting GPCR-transducer couplings, being also able to consider all GPCR classes. The webserver also provides new functionalities, such as the projection of input sequences on a low-dimensional space describing essential features of the human GPCRome, which is used as a reference to track GPCR variants. Additionally, it allows inspection of the sequence and structural determinants responsible for coupling via the analysis of the most important attention maps used by the models as well as through predicted intramolecular contacts. We demonstrate applications of PRECOGx by predicting the impact of disease variants (ClinVar) and alternative splice forms from healthy tissues (GTEX) of human GPCRs, revealing the power to dissect system biasing mechanisms in both health and disease.


Subject(s)
Machine Learning , Receptors, G-Protein-Coupled , Signal Transduction , Software , Humans , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Internet , beta-Arrestins/chemistry , beta-Arrestins/metabolism , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/metabolism , Computers , Genetic Predisposition to Disease/genetics , Alternative Splicing/genetics
3.
Cell Genom ; 4(5): 100557, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723607

ABSTRACT

We explored the dysregulation of G-protein-coupled receptor (GPCR) ligand systems in cancer transcriptomics datasets to uncover new therapeutics opportunities in oncology. We derived an interaction network of receptors with ligands and their biosynthetic enzymes. Multiple GPCRs are differentially regulated together with their upstream partners across cancer subtypes and are associated to specific transcriptional programs and to patient survival patterns. The expression of both receptor-ligand (or enzymes) partners improved patient stratification, suggesting a synergistic role for the activation of GPCR networks in modulating cancer phenotypes. Remarkably, we identified many such axes across several cancer molecular subtypes, including many involving receptor-biosynthetic enzymes for neurotransmitters. We found that GPCRs from these actionable axes, including, e.g., muscarinic, adenosine, 5-hydroxytryptamine, and chemokine receptors, are the targets of multiple drugs displaying anti-growth effects in large-scale, cancer cell drug screens, which we further validated. We have made the results generated in this study freely available through a webapp (gpcrcanceraxes.bioinfolab.sns.it).


Subject(s)
Neoplasms , Receptors, G-Protein-Coupled , Signal Transduction , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Ligands , Gene Expression Regulation, Neoplastic
4.
Nat Commun ; 14(1): 4361, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468476

ABSTRACT

GPCRs are master regulators of cell signaling by transducing extracellular stimuli into the cell via selective coupling to intracellular G-proteins. Here we present a computational analysis of the structural determinants of G-protein-coupling repertoire of experimental and predicted 3D GPCR-G-protein complexes. Interface contact analysis recapitulates structural hallmarks associated with G-protein-coupling specificity, including TM5, TM6 and ICLs. We employ interface contacts as fingerprints to cluster Gs vs Gi complexes in an unsupervised fashion, suggesting that interface residues contribute to selective coupling. We experimentally confirm on a promiscuous receptor (CCKAR) that mutations of some of these specificity-determining positions bias the coupling selectivity. Interestingly, Gs-GPCR complexes have more conserved interfaces, while Gi/o proteins adopt a wider number of alternative docking poses, as assessed via structural alignments of representative 3D complexes. Binding energy calculations demonstrate that distinct structural properties of the complexes are associated to higher stability of Gs than Gi/o complexes. AlphaFold2 predictions of experimental binary complexes confirm several of these structural features and allow us to augment the structural coverage of poorly characterized complexes such as G12/13.


Subject(s)
GTP-Binding Proteins , Signal Transduction , GTP-Binding Proteins/metabolism , Computational Biology , Receptors, G-Protein-Coupled/metabolism
5.
Bioinform Adv ; 3(1): vbad135, 2023.
Article in English | MEDLINE | ID: mdl-37810457

ABSTRACT

Summary: EXPANSION (https://expansion.bioinfolab.sns.it/) is an integrated web-server to explore the functional consequences of protein-coding alternative splice variants. We combined information from Differentially Expressed (DE) protein-coding transcripts from cancer genomics, together with domain architecture, protein interaction network, and gene enrichment analysis to provide an easy-to-interpret view of the effects of protein-coding splice variants. We retrieved all the protein-coding Ensembl transcripts and mapped Interpro domains and post-translational modifications on canonical sequences to identify functionally relevant splicing events. We also retrieved isoform-specific protein-protein interactions and binding regions from IntAct to uncover isoform-specific functions via gene-set over-representation analysis. Through EXPANSION, users can analyze precalculated or user-inputted DE transcript datasets, to easily gain functional insights on any protein spliceform of interest. Availability and Implementation: EXPANSION is freely available at http://expansion.bioinfolab.sns.it/. The code of the scripts used for EXPASION is available at: https://github.com/raimondilab/expansion. Datasets associated to this resource are available at the following URL: https://doi.org/10.5281/zenodo.8229120. The web-server was developed using Apache2 (https://https.apache.org/) and Flask (v2.0.2) (http://flask.pocoo.org/) for the web frontend and for the internal pipeline to handle back-end processes. We additionally used the following Python and JavaScript libraries at both back- and front-ends: D3 (v4), jQuery (v3.2.1), DataTables (v2.3.2), biopython (v1.79), gprofiler-officia l(v1.0.0), Mysql-connector-python (v8.0.31). To construct the API, Fast API library (v0.95.1) was used.

6.
bioRxiv ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37398064

ABSTRACT

We explored the dysregulation of GPCR ligand signaling systems in cancer transcriptomics datasets to uncover new therapeutics opportunities in oncology. We derived an interaction network of receptors with ligands and their biosynthetic enzymes, which revealed that multiple GPCRs are differentially regulated together with their upstream partners across cancer subtypes. We showed that biosynthetic pathway enrichment from enzyme expression recapitulated pathway activity signatures from metabolomics datasets, providing valuable surrogate information for GPCRs responding to organic ligands. We found that several GPCRs signaling components were significantly associated with patient survival in a cancer type-specific fashion. The expression of both receptor-ligand (or enzymes) partners improved patient stratification, suggesting a synergistic role for the activation of GPCR networks in modulating cancer phenotypes. Remarkably, we identified many such axes across several cancer molecular subtypes, including many pairs involving receptor-biosynthetic enzymes for neurotransmitters. We found that GPCRs from these actionable axes, including e.g., muscarinic, adenosine, 5-hydroxytryptamine and chemokine receptors, are the targets of multiple drugs displaying anti-growth effects in large-scale, cancer cell drug screens. We have made the results generated in this study freely available through a webapp (gpcrcanceraxes.bioinfolab.sns.it).

7.
J Phys Chem B ; 124(5): 727-734, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31917571

ABSTRACT

The cell is an extremely complex environment, notably highly crowded, segmented, and confining. Overall, there is overwhelming and ever-growing evidence that to understand how biochemical reactions proceed in vivo, one cannot separate the biochemical actors from their environment. Effects such as excluded volume, obstructed diffusion, weak nonspecific interactions, and fluctuations all team up to steer biochemical reactions often very far from what is observed in ideal conditions. In this paper, we use Ficoll PM70 and PEG 6000 to build an artificial crowded milieu of controlled composition and density in order to assess how such environments influence the biocatalytic activity of lactate dehydrogenase (LDH). Our measurements show that the normalized apparent affinity and maximum velocity decrease in the same fashion, a behavior reminiscent of uncompetitive inhibition, with PEG resulting in the largest reduction. In line with previous studies on other enzymes of the same family, and in agreement with the known role of a surface loop involved in enzyme isomerization and regulation of access to the active site, we suggest that the crowding matrix interferes with the conformational ensemble of the enzyme. This likely results in both impaired enzyme-complex isomerization and thwarted product release. Molecular dynamics simulations confirm that excluded-volume effects lead to an entropic force that effectively tends to push the loop closed, thereby effectively shifting the conformational ensemble of the enzyme in favor of a more stable complex isoform. Overall, our study substantiates the idea that most biochemical kinetics cannot be fully explained without including the subtle action of the environment where they take place naturally, in particular accounting for important factors such as excluded-volume effects and also weak nonspecific interactions when present, confinement, and fluctuations.


Subject(s)
Ficoll/chemistry , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/chemistry , Biocatalysis , Catalytic Domain , Diffusion , Entropy , Humans , Kinetics , Molecular Dynamics Simulation , NAD/chemistry , Polyethylene Glycols/chemistry , Pyruvic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL