Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev E ; 106(5-1): 054147, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559395

ABSTRACT

The Lévy flight foraging hypothesis states that organisms must have evolved adaptations to exploit Lévy walk search strategies. Indeed, it is widely accepted that inverse square Lévy walks optimize the search efficiency in foraging with unrestricted revisits (also known as nondestructive foraging). However, a mathematically rigorous demonstration of this for dimensions D≥2 is still lacking. Here we study the very closely related problem of a Lévy walker inside annuli or spherical shells with absorbing boundaries. In the limit that corresponds to the foraging with unrestricted revisits, we show that inverse square Lévy walks optimize the search. This constitutes the strongest formal result to date supporting the optimality of inverse square Lévy walks search strategies.

SELECTION OF CITATIONS
SEARCH DETAIL