Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
Add more filters

Publication year range
1.
Nature ; 590(7845): 320-325, 2021 02.
Article in English | MEDLINE | ID: mdl-33260195

ABSTRACT

The expanding pandemic of coronavirus disease 2019 (COVID-19) requires the development of safe, efficacious and fast-acting vaccines. Several vaccine platforms are being leveraged for a rapid emergency response1. Here we describe the development of a candidate vaccine (YF-S0) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express a noncleavable prefusion form of the SARS-CoV-2 spike antigen. We assess vaccine safety, immunogenicity and efficacy in several animal models. YF-S0 has an excellent safety profile and induces high levels of SARS-CoV-2 neutralizing antibodies in hamsters (Mesocricetus auratus), mice (Mus musculus) and cynomolgus macaques (Macaca fascicularis), and-concomitantly-protective immunity against yellow fever virus. Humoral immunity is complemented by a cellular immune response with favourable T helper 1 polarization, as profiled in mice. In a hamster model2 and in macaques, YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose conferred protection from lung disease in most of the vaccinated hamsters within as little as 10 days. Taken together, the quality of the immune responses triggered and the rapid kinetics by which protective immunity can be attained after a single dose warrant further development of this potent SARS-CoV-2 vaccine candidate.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Genetic Vectors/genetics , SARS-CoV-2/immunology , Vaccines, Attenuated/immunology , Yellow Fever Vaccine/genetics , Animals , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/genetics , Cricetinae , Disease Models, Animal , Female , Glycosylation , Macaca fascicularis/genetics , Macaca fascicularis/immunology , Macaca fascicularis/virology , Male , Mesocricetus/genetics , Mesocricetus/immunology , Mesocricetus/virology , Mice , Safety , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics
2.
Proc Natl Acad Sci U S A ; 119(13): e2114619119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35320047

ABSTRACT

SignificanceMicrobes colonizing the infant gut during the first year(s) of life play an important role in immune system development. We show that after birth the (nearly) sterile gut is rapidly colonized by bacteria and their viruses (phages), which often show a strong cooccurrence. Most viruses infecting the infant do not cause clinical signs and their numbers strongly increase after day-care entrance. The infant diet is clearly reflected by identification of plant-infecting viruses, whereas fungi and parasites are not part of a stable gut microbiota. These temporal high-resolution baseline data about the gut colonization process will be valuable for further investigations of pathogenic viruses, dynamics between phages and their bacterial host, as well as studies investigating infants with a disturbed microbiota.


Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Microbiota , Viruses , Bacteria , Humans , Infant
3.
J Hepatol ; 81(2): 345-359, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38552880

ABSTRACT

The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.


Subject(s)
Biomarkers , Humans , Biomarkers/analysis , Biomarkers/metabolism , Fatty Liver/diagnosis , Fatty Liver/genetics , Proteomics/methods , Metabolomics/methods , Genomics/methods
4.
Brain Behav Immun ; 123: 510-523, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39368785

ABSTRACT

Mental health disorders and neurodegenerative diseases place a heavy burden on patients and societies, and, although great strides have been made to understand the pathophysiology of these conditions, advancement in drug development is lagging. The importance of gastrointestinal health in maintaining overall health and preventing disease is not a new concept. Hundreds of years ago, healers from various cultures and civilizations recognized the crucial role of the gut in sustaining health. More than a century ago, scientists began exploring the restorative effects of probiotics, marking the early recognition of the importance of gut microbes. The omics era brought more enlightenment and enabled researchers to identify the complexity of the microbial ecosystems we harbour, encompassing bacteria, eukaryotes (including fungi), archaea, viruses, and other microorganisms. The extensive genetic capacity of the microbiota is dynamic and influenced by the environment. The microbiota therefore serves as a significant entity within us, with evolutionarily preserved functions in host metabolism, immunity, development, and behavior. The significant role of the bacterial gut microbiome in mental health and neurodegenerative disorders has been realized and described within the framework of the microbiota-gut-brain axis. However, the bacterial members do not function unaccompanied, but rather in concert, and there is a substantial knowledge gap regarding the involvement of non-bacterial microbiome members in these disorders. In this review, we will explore the current literature that implicates a role for the entire metagenomic ensemble, and how their complex interkingdom relationships could influence CNS functioning in mental health disorders and neurodegenerative diseases.

5.
Clin Exp Dermatol ; 48(11): 1221-1229, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37315154

ABSTRACT

Phage therapy is an emerging antimicrobial treatment for critical multidrug-resistant pathogens. In this review, the specific potential and challenges of phage therapy for patients with hidradenitis suppurativa (HS) are discussed. This represents a unique challenge as HS is a chronic inflammatory disease, but presenting with acute exacerbations, which have an enormous negative impact on patient's quality of life. The therapeutic arsenal for HS has expanded in the past decade, for example, with adalimumab and several other biologicals that are currently under investigation. However, treatment of HS remains challenging for dermatologists because there are individuals who do not respond to any classes of the current treatment options when used for a first or second time. Furthermore, after several courses of treatment, a patient may lose their response to therapy, meaning long-term use is not always an option. Culturing studies and 16S ribosomal RNA profiling highlight the complex polymicrobial nature of HS lesions. Despite the detection of various bacterial species in lesion samples, several key pathogens, including Staphylococcus, Corynebacterium and Streptococcus, may be potential targets for phage therapy. Using phage therapy for the treatment of a chronic inflammatory disease could potentially provide new insights into the role of bacteria and the immune system in HS development. In addition, it is possible more details on the immunomodulatory effects of phages may come to light.


Subject(s)
Hidradenitis Suppurativa , Phage Therapy , Humans , Hidradenitis Suppurativa/drug therapy , Quality of Life , Precision Medicine , Adalimumab/therapeutic use
6.
Proc Natl Acad Sci U S A ; 117(19): 10511-10519, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32341166

ABSTRACT

Honey bees (Apis mellifera) produce an enormous economic value through their pollination activities and play a central role in the biodiversity of entire ecosystems. Recent efforts have revealed the substantial influence that the gut microbiota exert on bee development, food digestion, and homeostasis in general. In this study, deep sequencing was used to characterize prokaryotic viral communities associated with honey bees, which was a blind spot in research up until now. The vast majority of the prokaryotic viral populations are novel at the genus level, and most of the encoded proteins comprise unknown functions. Nevertheless, genomes of bacteriophages were predicted to infect nearly every major bee-gut bacterium, and functional annotation and auxiliary metabolic gene discovery imply the potential to influence microbial metabolism. Furthermore, undiscovered genes involved in the synthesis of secondary metabolic biosynthetic gene clusters reflect a wealth of previously untapped enzymatic resources hidden in the bee bacteriophage community.


Subject(s)
Bacteriophages/genetics , Bees/metabolism , Bees/virology , Animals , Bacteria/genetics , Bacteriophages/metabolism , Bees/genetics , Biodiversity , Ecosystem , Gastrointestinal Microbiome/genetics , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Phylogeny , Pollination/genetics , Symbiosis/genetics
7.
J Gen Virol ; 103(11)2022 11.
Article in English | MEDLINE | ID: mdl-36394457

ABSTRACT

Spinareoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (9-12 linear segments) dsRNA genomes of 23-29 kbp. Spinareovirids have a broad host range, infecting animals, fungi and plants. Some have important pathogenic potential for humans (e.g. Colorado tick fever virus), livestock (e.g. avian orthoreoviruses), fish (e.g. aquareoviruses) and plants (e.g. rice ragged stunt virus and rice black streaked dwarf virus). This is a summary of the ICTV Report on the family Spinareoviridae, which is available at ictv.global/report/spinareoviridae.


Subject(s)
Fungi , RNA, Double-Stranded , Animals , Humans , Plants , Host Specificity , Phylogeny
8.
J Gen Virol ; 103(10)2022 10.
Article in English | MEDLINE | ID: mdl-36215107

ABSTRACT

Sedoreoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (10-12 linear segments) dsRNA genomes of 18-26 kbp. Sedoreovirids have a broad host range, infecting mammals, birds, crustaceans, arthropods, algae and plants. Some of them have important pathogenic potential for humans (e.g. rotavirus A), livestock (e.g. bluetongue virus) and plants (e.g. rice dwarf virus). This is a summary of the ICTV Report on the family Sedoreoviridae, which is available at ictv.global/report/sedoreoviridae.


Subject(s)
Mammals , RNA, Double-Stranded , Animals , Birds , Genome, Viral , Humans , Plants , Virion , Virus Replication
9.
Virol J ; 19(1): 12, 2022 01 15.
Article in English | MEDLINE | ID: mdl-35033134

ABSTRACT

In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes.


Subject(s)
RNA Viruses , Varroidae , Animals , Bees , DNA Viruses , Egypt , RNA Viruses/genetics
10.
J Gen Virol ; 102(4)2021 04.
Article in English | MEDLINE | ID: mdl-33830912

ABSTRACT

The alpaca is a very important social and economic resource for the production of fibre and meat for Andean communities. Peru is the main producer of alpacas. Group A rotavirus (RVA) has been sporadically detected in alpacas. In this study, a total of 1423 faecal samples from alpacas from different locations of the Puno department in Peru were collected and analysed by an antigen-capture ELISA in order to detect RVA. Four per cent of the samples were RVA-positive (57/1423). The genotype constellation of three selected alpaca RVA strains were G3/8 P[1/14]-I2-R2/5-C2/3-M2/3-A17-N2/3-T6-E3-H3. Two of the analysed strains presented a bovine-like genotype constellation, whereas the third strain presented six segments belonging to the AU-1-like genogroup (G3, M3, C3, N3, T3 and E3), suggesting reassorting events. Monitoring of the sanitary health of juvenile alpacas is essential to reduce the rates of neonatal mortality and for the development of preventive health strategies.


Subject(s)
Camelids, New World/virology , Rotavirus Infections , Rotavirus/isolation & purification , Animals , Feces/virology , Genome, Viral , Genotype , Peru/epidemiology , Rotavirus/classification , Rotavirus Infections/veterinary , Rotavirus Infections/virology
11.
J Clin Microbiol ; 59(12): e0123621, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34586890

ABSTRACT

Despite the global use of rotavirus vaccines, vaccine breakthrough cases remain a pediatric health problem. In this study, we investigated suspected rotavirus vaccine breakthrough cases using next-generation sequencing (NGS)-based viral metagenomics (n = 102) and a panel of semiquantitative reverse transcription-PCR (RT-qPCR) (n = 92) targeting known enteric pathogens. Overall, we identified coinfections in 80% of the cases. Enteropathogens such as adenovirus (32%), enterovirus (15%), diarrheagenic Escherichia coli (1 to 14%), astrovirus (10%), Blastocystis spp. (10%), parechovirus (9%), norovirus (9%), Clostridioides (formerly Clostridium) difficile (9%), Dientamoeba fragilis (9%), sapovirus (8%), Campylobacter jejuni (4%), and Giardia lamblia (4%) were detected. Except for a few reassortant rotavirus strains, unusual genotypes or genotype combinations were not present. However, in addition to well-known enteric viruses, divergent variants of enteroviruses and nonclassic astroviruses were identified using NGS. We estimated that in 31.5% of the patients, rotavirus was likely not the cause of gastroenteritis, and in 14.1% of the patients, it contributed together with another pathogen(s) to disease. The remaining 54.4% of the patients likely had a true vaccine breakthrough infection. The high prevalence of alternative enteropathogens in the suspected rotavirus vaccine breakthrough cases suggests that gastroenteritis is often the result of a coinfection and that rotavirus vaccine effectiveness might be underestimated in clinical and epidemiological studies.


Subject(s)
Rotavirus Vaccines , Child , Feces , Humans , Prevalence , Real-Time Polymerase Chain Reaction
12.
PLoS Pathog ; 15(9): e1008009, 2019 09.
Article in English | MEDLINE | ID: mdl-31536612

ABSTRACT

Human noroviruses (HuNoVs) are the most common cause of foodborne illness, with a societal cost of $60 billion and 219,000 deaths/year. The lack of robust small animal models has significantly hindered the understanding of norovirus biology and the development of effective therapeutics. Here we report that HuNoV GI and GII replicate to high titers in zebrafish (Danio rerio) larvae; replication peaks at day 2 post infection and is detectable for at least 6 days. The virus (HuNoV GII.4) could be passaged from larva to larva two consecutive times. HuNoV is detected in cells of the hematopoietic lineage and the intestine, supporting the notion of a dual tropism. Antiviral treatment reduces HuNoV replication by >2 log10, showing that this model is suited for antiviral studies. Zebrafish larvae constitute a simple and robust replication model that will largely facilitate studies of HuNoV biology and the development of antiviral strategies.


Subject(s)
Norovirus/physiology , Norovirus/pathogenicity , Virus Replication/physiology , Zebrafish/virology , Animals , Antiviral Agents/administration & dosage , Caliciviridae Infections/virology , Foodborne Diseases/virology , Gastroenteritis/virology , Host Microbial Interactions , Humans , Larva/virology , Metagenomics , Models, Animal , Norovirus/genetics , Virus Cultivation/methods , Virus Replication/drug effects
13.
J Gen Virol ; 101(6): 651-666, 2020 06.
Article in English | MEDLINE | ID: mdl-32391748

ABSTRACT

Crangon crangon is economically a very important species. Recently, promising culture attempts have been made, but a major problem is the uncontrollable mortality during the grow-out phase. As of yet, the life cycle of C. crangon is not closed in captivity so wild-caught individuals are used for further rearing. Therefore, it is important to investigate the virome of C. crangon both in wild-caught animals as in cultured animals. In recent years, next-generation-sequencing (NGS) technologies have been very important in the unravelling of the virome of a wide range of environments and matrices, such as soil, sea, potable water, but also of a wide range of animal species. This will be the first report of a virome study in C. crangon using NGS in combination with the NetoVIR protocol. The near complete genomes of 16 novel viruses were described, most of which were rather distantly related to unclassified viruses or viruses belonging to the Picornavirales, Bunyavirales Nudiviridae, Parvoviridae, Flaviviridae, Hepeviridae, Tombusviridae, Narnaviridae, Nodaviridae, Sobemovirus. A difference in virome composition was observed between muscle and hepatopancreatic tissue, suggesting a distinct tissue tropism of several of these viruses. Some differences in the viral composition were noted between the cultured and wild shrimp, which could indicate that in sub-optimal aquaculture conditions some viruses become more abundant. This research showed that a plethora of unknown viruses is present in C. crangon and that more research is needed to determine which virus is potentially dangerous for the culture of C. crangon.


Subject(s)
Crangonidae/virology , DNA Viruses/pathogenicity , Animals , Aquaculture , Penaeidae/virology
14.
J Med Virol ; 92(12): 3179-3186, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31696948

ABSTRACT

Multiple Rotavirus A (RVA) strains are linked with gastrointestinal infections in children that fall in age bracket of 0 to 60 months. However, the problem is augmented with emergence of unique strains that reassort with RVA strains of animal origin. The study describes the sequence analysis of a rare G6P[1] rotavirus strain isolated from a less than 1 year old child, during rotavirus surveillance in Rawalpindi district, Pakistan in 2010. Extracted RNA from fecal specimen was subjected to high throughput RT-PCR for structural and nonstructural gene segments. The complete rotavirus genome of one isolate RVA/Human-wt/PAK/PAK99/2010/G6P[1] was sequenced for phylogenetic analysis to elucidate the evolutionary linkages and origin. Full genome examination of novel strain RVA/Human-wt/PAK/PAK99/2010/G6P[1] revealed the unique genotype assemblage: G6-P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H1. The evolutionary analyses of VP7, VP4, NSP1 and NSP3 gene segments revealed that PAK99 clustered with bovine, or cattle-like rotavirus strains from other closely related species, in the genotypes G6, P[1], A3 and T6 respectively. Gene segments VP6, VP1, VP2, VP3, NSP2 and NSP4 all possessed the DS-1-like bovine genotype 2 and bovine (-like) RVA strains instead of RVA strains having human origin. However, the NSP5 gene was found to cluster closely with contemporary human Wa-like rotavirus strains of H1 genotype. This is the first report on bovine-human (Wa-like reassortant) genotype constellation of G6P[1] strain from a human case in Pakistan (and the second description worldwide). Our results emphasize the significance of incessant monitoring of circulating RVA strains in humans and animals for better understanding of RV evolution.

15.
Biologicals ; 67: 94-111, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32660862

ABSTRACT

The IABS-EU, in association with PROVAXS and Ghent University, hosted the "2nd Conference on Next Generation Sequencing (NGS) for Adventitious Virus Detection in Human and Veterinary Biologics" held on November 13th and 14th 2019, in Ghent, Belgium. The meeting brought together international experts from regulatory agencies, the biotherapeutics and biologics industries, contract research organizations, and academia, with the goal to develop a scientific consensus on the readiness of NGS for detecting adventitious viruses, and on the use of this technology to supplement or replace/substitute the currently used assays. Participants discussed the progress on the standardization and validation of the technical and bioinformatics steps in NGS for characterization and safety evaluation of biologics, including human and animal vaccines. It was concluded that NGS can be used for the detection of a broad range of viruses, including novel viruses, and therefore can complement, supplement or even replace some of the conventional adventitious virus detection assays. Furthermore, the development of reference viral standards, complete and correctly annotated viral databases, and protocols for the validation and follow-up investigations of NGS signals is necessary to enable broader use of NGS. An international collaborative effort, involving regulatory authorities, industry, academia, and other stakeholders is ongoing toward this goal.


Subject(s)
Biological Products/standards , Drug Contamination/prevention & control , High-Throughput Nucleotide Sequencing/methods , Vaccines/standards , Viruses/genetics , Animals , Humans , International Cooperation , Reference Standards
16.
J Clin Microbiol ; 57(8)2019 08.
Article in English | MEDLINE | ID: mdl-31167846

ABSTRACT

Quality management and independent assessment of high-throughput sequencing-based virus diagnostics have not yet been established as a mandatory approach for ensuring comparable results. The sensitivity and specificity of viral high-throughput sequence data analysis are highly affected by bioinformatics processing using publicly available and custom tools and databases and thus differ widely between individuals and institutions. Here we present the results of the COMPARE [Collaborative Management Platform for Detection and Analyses of (Re-)emerging and Foodborne Outbreaks in Europe] in silico virus proficiency test. An artificial, simulated in silico data set of Illumina HiSeq sequences was provided to 13 different European institutes for bioinformatics analysis to identify viral pathogens in high-throughput sequence data. Comparison of the participants' analyses shows that the use of different tools, programs, and databases for bioinformatics analyses can impact the correct identification of viral sequences from a simple data set. The identification of slightly mutated and highly divergent virus genomes has been shown to be most challenging. Furthermore, the interpretation of the results, together with a fictitious case report, by the participants showed that in addition to the bioinformatics analysis, the virological evaluation of the results can be important in clinical settings. External quality assessment and proficiency testing should become an important part of validating high-throughput sequencing-based virus diagnostics and could improve the harmonization, comparability, and reproducibility of results. There is a need for the establishment of international proficiency testing, like that established for conventional laboratory tests such as PCR, for bioinformatics pipelines and the interpretation of such results.


Subject(s)
Computational Biology/methods , Computer Simulation , High-Throughput Nucleotide Sequencing/standards , Laboratory Proficiency Testing/statistics & numerical data , Sequence Analysis, DNA/standards , Viruses/genetics , Data Analysis , Europe , Genome, Viral , High-Throughput Nucleotide Sequencing/methods , Humans , Intersectoral Collaboration , Laboratory Proficiency Testing/organization & administration , Reproducibility of Results , Sequence Analysis, DNA/statistics & numerical data , Viruses/pathogenicity
18.
Arch Virol ; 164(7): 1781-1791, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31079214

ABSTRACT

Introduction of animal group A rotavirus (RVA) gene segments into the human RVA population is a major factor shaping the genetic landscape of human RVA strains. The VP6 and NSP4 genes of 74 G/P-genotyped RVA isolates collected in Rawalpindi during 2010 were analyzed, revealing the presence of VP6 genotypes I1 (60.8%) and I2 (39.2%) and NSP4 genotypes E1 (60.8%), E2 (28.3%) and E-untypable (10.8%) among the circulating human RVA strains. The typical human RVA combinations I1E1 and I2E2 were found in 59.4% and 24.3% of the cases, respectively, whereas 5.4% of the RVA strains were reassortants, i.e., either I1E2 or I2E1. The phylogeny of the NSP4 gene showed that one G2P[4] and two G1P[6] RVA strains clustered with porcine E1 RVA strains or RVA strains that were considered to be (partially) of porcine origin. In addition, the NSP4 gene segment of the unusual human G6P[1] RVA strains clustered closely with bovine E2 RVA strains, further strengthening the hypothesis of an interspecies transmission event. The study further demonstrates the role of genomic re-assortment and the involvement of interspecies transmission in the evolution of human RVA strains. The VP6 and NSP4 nucleotide sequences analyzed in the study received the GenBank accession numbers KC846908- KC846971 and KC846972-KC847037, respectively.


Subject(s)
Antigens, Viral/genetics , Capsid Proteins/genetics , Glycoproteins/genetics , Rotavirus Infections/transmission , Rotavirus/genetics , Rotavirus/isolation & purification , Toxins, Biological/genetics , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Animals , Cattle , Child, Preschool , Gastroenteritis/virology , Genome, Viral/genetics , Genotype , Humans , Pakistan , Phylogeny , Rotavirus Infections/virology , Sequence Alignment , Swine , Zoonoses/virology
19.
Emerg Infect Dis ; 24(12): 2380-2382, 2018 12.
Article in English | MEDLINE | ID: mdl-30457549

ABSTRACT

An elderly patient in Belgium who became critically ill after returning from Hungary was tested for pathogens using routine diagnostic tests. All results were negative. However, using next-generation sequencing on a cultured respiratory sample, laboratorians detected a complete West Nile virus genome, similar to strains isolated in southeastern Europe.


Subject(s)
High-Throughput Nucleotide Sequencing , Travel-Related Illness , West Nile Fever/diagnosis , West Nile Fever/virology , West Nile virus/genetics , Aged, 80 and over , Belgium , Genome, Viral , Humans , Hungary , Male , Phylogeny , West Nile Fever/epidemiology
20.
J Virol ; 91(12)2017 06 15.
Article in English | MEDLINE | ID: mdl-28381569

ABSTRACT

Bats are natural reservoirs for many pathogenic viruses, and increasing evidence supports the notion that bats can also harbor group A rotaviruses (RVAs), important causative agents of diarrhea in children and young animals. Currently, 8 RVA strains possessing completely novel genotype constellations or genotypes possibly originating from other mammals have been identified from African and Chinese bats. However, all the data were mainly based on detection of RVA RNA, present only during acute infections, which does not permit assessment of the true exposure of a bat population to RVA. To systematically investigate the genetic diversity of RVAs, 547 bat anal swabs or gut samples along with 448 bat sera were collected from five South Chinese provinces. Specific reverse transcription-PCR (RT-PCR) screening found four RVA strains. Strain GLRL1 possessed a completely novel genotype constellation, whereas the other three possessed a constellation consistent with the MSLH14-like genotype, a newly characterized group of viruses widely prevalent in Chinese insectivorous bats. Among the latter, strain LZHP2 provided strong evidence of cross-species transmission of RVAs from bats to humans, whereas strains YSSK5 and BSTM70 were likely reassortants between typical MSLH14-like RVAs and human RVAs. RVA-specific antibodies were detected in 10.7% (48/448) of bat sera by an indirect immunofluorescence assay (IIFA). Bats in Guangxi and Yunnan had a higher RVA-specific antibody prevalence than those from Fujian and Zhejiang provinces. These observations provide evidence for cross-species transmission of MSLH14-like bat RVAs to humans, highlighting the impact of bats as reservoirs of RVAs on public health.IMPORTANCE Bat viruses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), Ebola, Hendra, and Nipah viruses, are important pathogens causing outbreaks of severe emerging infectious diseases. However, little is known about bat viruses capable of causing gastroenteritis in humans, even though 8 group A viruses (RVAs) have been identified from bats so far. In this study, another 4 RVA strains were identified, with one providing strong evidence for zoonotic transmission from bats to humans. Serological investigation has also indicated that RVA infection in bats is far more prevalent than expected based on the detection of viral RNA.


Subject(s)
Chiroptera/virology , Disease Reservoirs/virology , Genetic Variation , Reassortant Viruses , Rotavirus Infections/veterinary , Rotavirus/genetics , Anal Canal/virology , Animals , Antibodies, Viral/blood , Child, Preschool , China , Genome, Viral , Genotype , Humans , Intestines/virology , Phylogeny , RNA, Viral/genetics , Rotavirus/classification , Rotavirus/immunology , Rotavirus/isolation & purification , Rotavirus Infections/immunology , Rotavirus Infections/transmission , Rotavirus Infections/virology , Zoonoses
SELECTION OF CITATIONS
SEARCH DETAIL