Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Article in English | MEDLINE | ID: mdl-27161010

ABSTRACT

Attempts are frequently made to investigate adverse findings from preclinical toxicology studies in order to better understand underlying toxicity mechanisms. These efforts often begin with limited information, including a description of the adverse finding, knowledge of the structure of the chemical associated with its cause and the intended pharmacological target. ToxEvaluator was developed jointly by Pfizer and the Comparative Toxicogenomics Database (http://ctdbase.org) team at North Carolina State University as an in silico platform to facilitate interpretation of toxicity findings in light of prior knowledge. Through the integration of a diverse set of in silico tools that leverage a number of public and proprietary databases, ToxEvaluator streamlines the process of aggregating and interrogating diverse sources of information. The user enters compound and target identifiers, and selects adverse event descriptors from a safety lexicon and mapped MeSH disease terms. ToxEvaluator provides a summary report with multiple distinct areas organized according to what target or structural aspects have been linked to the adverse finding, including primary pharmacology, structurally similar proprietary compounds, structurally similar public domain compounds, predicted secondary (i.e. off-target) pharmacology and known secondary pharmacology. Similar proprietary compounds and their associated in vivo toxicity findings are reported, along with a link to relevant supporting documents. For similar public domain compounds and interacting targets, ToxEvaluator integrates relationships curated in Comparative Toxicogenomics Database, returning all direct and inferred linkages between them. As an example of its utility, we demonstrate how ToxEvaluator rapidly identified direct (primary pharmacology) and indirect (secondary pharmacology) linkages between cerivastatin and myopathy.


Subject(s)
Computational Biology/methods , Database Management Systems , Databases, Factual , Toxicogenetics/methods , Animals , Computer Simulation , Humans , Mice , User-Computer Interface
2.
Environ Health Perspect ; 109(8): 845-9, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11564622

ABSTRACT

We developed an inducible in vivo reporter system to examine expression of the aryl hydrocarbon receptor (AhR) during development in zebrafish (Danio rerio). AhR is a ligand-activated transcription factor that mediates the toxic actions of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Induction of cytochrome P4501A1 (CYP1A1) is an early biomarker of AhR activation. A 1905 base pair region of the human CYP1A1 promoter/enhancer region was regulated by AhR in zebrafish liver cells after exposure to TCDD (10 nM) in a transient transfection assay. This regulatory region was fused to the cDNA sequence encoding green fluorescent protein (GFP) of jellyfish (Aequorea victoria). Transgenic zebrafish were generated to express this AhR-regulated GFP construct. Injected fish exposed to TCDD exhibited induction of GFP in the eye, nose, and vertebrae of zebrafish embryos (48 and 72 hr after fertilization) compared to vehicle controls (DMSO), which did not express GFP. To investigate whether AhR-regulated GFP expression correlated with sites of TCDD toxicity, we exposed wild-type zebrafish to DMSO or TCDD and examined them for morphologic abnormalities. By 5 days after fertilization, TCDD-exposed fish exhibited gross dysmorphogenesis in cranio-facial and vertebral development.


Subject(s)
Biomarkers/analysis , Luminescent Proteins/biosynthesis , Receptors, Aryl Hydrocarbon/genetics , Zebrafish/embryology , Animals , Cytochrome P-450 CYP1A1/genetics , Eye Abnormalities/chemically induced , Green Fluorescent Proteins , Models, Animal , Morphogenesis/drug effects , Polychlorinated Dibenzodioxins/toxicity , Spine/abnormalities , Transcription, Genetic , Transfection
3.
J Exp Zool A Comp Exp Biol ; 305(9): 689-92, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16902965

ABSTRACT

The etiology of most chronic diseases involves interactions between environmental factors and genes that modulate important biological processes (Olden and Wilson, 2000. Nat Rev Genet 1(2):149-153). We are developing the publicly available Comparative Toxicogenomics Database (CTD) to promote understanding about the effects of environmental chemicals on human health. CTD identifies interactions between chemicals and genes and facilitates cross-species comparative studies of these genes. The use of diverse animal models and cross-species comparative sequence studies has been critical for understanding basic physiological mechanisms and gene and protein functions. Similarly, these approaches will be valuable for exploring the molecular mechanisms of action of environmental chemicals and the genetic basis of differential susceptibility.


Subject(s)
Databases, Factual , Toxicogenetics , Animals , Humans , Xenobiotics/toxicity
4.
Dev Dyn ; 222(4): 645-54, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11748833

ABSTRACT

Induction patterns of cytochrome P4501A1 (CYP1A1), an early biochemical marker of exposure to the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, or dioxin) were investigated during zebrafish (Danio rerio) development. A zebrafish CYP1A1 cDNA fragment was cloned and used to detect CYP1A1 mRNA in embryos exposed to TCDD (1 or 10 nM). Induction of CYP1A1 activity was dependent on age and state of hatch. CYP1A1 mRNA was observed by 15 hr postfertilization. CYP1A1 protein and monooxygenase activity were not detected until 3 days postfertilization and after hatch, as determined by Western immunoblot analysis and ethoxyresorufin O-deethylase (EROD) activity, respectively. In contrast to embryos, concomitant induction of mRNA and activity was detected in juvenile zebrafish (3 days posthatch) after 6 hr of TCDD exposure. Asynchronous induction of CYP1A1 mRNA and activity during development may be a general regulatory mechanism, as similar ontogenetic expression of this gene was demonstrated in mouse embryos. To our knowledge, this is the first report of CYP1A1 posttranscriptional silencing during embryogenesis. Our data suggest that TCDD-mediated induction of CYP1A1 activity is regulated differentially in developing and mature systems.


Subject(s)
Cytochrome P-450 CYP1A1/genetics , Gene Silencing , Transcription, Genetic , Zebrafish/embryology , Zebrafish/genetics , Aging/metabolism , Animals , Base Sequence/genetics , Cloning, Molecular , Cytochrome P-450 CYP1A1/metabolism , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/physiology , Environmental Pollutants/poisoning , Gene Expression Regulation , Gene Expression Regulation, Developmental , Molecular Sequence Data , Polychlorinated Dibenzodioxins/poisoning , RNA, Messenger/metabolism , Zebrafish/metabolism
5.
J Biol Chem ; 274(6): 3430-8, 1999 Feb 05.
Article in English | MEDLINE | ID: mdl-9920887

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exerts its toxic action via the aryl hydrocarbon (Ah) receptor, which induces a battery of xenobiotic-metabolizing enzymes, including the cytochrome P450 isozyme, CYP1A1. TCDD-induced 7-ethoxycoumarin-O-deethylase activity was reduced 75% in cultured human endometrial ECC-1 cells exposed to various concentrations of 17beta-estradiol for up to 72 h, with a half-maximal effective concentration (EC50) of 0.9 nM. Reduced enzyme activity was correlated with decreased CYP1A1 mRNA levels, and transcription. Exposure to TCDD plus 17beta-estradiol also reduced CYP1A1 activity in MCF-7 breast cancer cells but not in Hep-3B human liver cells or HuE primary human keratinocytes, suggesting that the effect was specific to estrogen-regulated cells. Estrogen receptor antagonists 4-hydroxytamoxifen and 7alpha-[9-(4,4, 5,5,5-pentafluoro-pentylsulfinyl)nonyl]estra-1,3,5(10)-tr iene3, 17beta-diol restored TCDD-induced CYP1A1 transcription, steady-state mRNA levels, and enzymatic activity in ECC-1 cells. Gel mobility shift assay showed that 17beta-estradiol had little effect on Ah receptor binding to its DNA-responsive element. 17beta-Estradiol did not alter the induction of another Ah receptor-regulated gene, CYP1B1, suggesting that altered Ah receptor binding to DNA does not mediate reduced CYP1A1 transcription. Transfecting ECC-1 cells with a general transcription factor involved in CYP1A1 induction, nuclear factor-1, reversed 17beta-estradiol antagonism of dioxin induced-CYP1A1. The data suggest that 17beta-estradiol reduced CYP1A1 expression at the transcriptional level by squelching available nuclear factor-1, a transcription factor that interacts with both Ah and estrogen receptors.


Subject(s)
Cytochrome P-450 CYP1A1/biosynthesis , Endometrium/enzymology , Receptors, Estrogen/physiology , Cell Line , Cytochrome P-450 CYP1A1/genetics , Endometrium/cytology , Endometrium/drug effects , Enzyme Induction , Estradiol/pharmacology , Female , Humans , Polychlorinated Dibenzodioxins/pharmacology , RNA, Messenger/genetics , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL