Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS Biol ; 19(6): e3001311, 2021 06.
Article in English | MEDLINE | ID: mdl-34181639

ABSTRACT

Proteins of the major histocompatibility complex class I (MHC I), predominantly known for antigen presentation in the immune system, have recently been shown to be necessary for developmental neural refinement and adult synaptic plasticity. However, their roles in nonneuronal cell populations in the brain remain largely unexplored. Here, we identify classical MHC I molecule H2-Kb as a negative regulator of proliferation in neural stem and progenitor cells (NSPCs). Using genetic knockout mouse models and in vivo viral-mediated RNA interference (RNAi) and overexpression, we delineate a role for H2-Kb in negatively regulating NSPC proliferation and adult hippocampal neurogenesis. Transcriptomic analysis of H2-Kb knockout NSPCs, in combination with in vitro RNAi, overexpression, and pharmacological approaches, further revealed that H2-Kb inhibits cell proliferation by dampening signaling pathways downstream of fibroblast growth factor receptor 1 (Fgfr1). These findings identify H2-Kb as a critical regulator of cell proliferation through the modulation of growth factor signaling.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction , Aging/metabolism , Animals , Cell Cycle , Cell Proliferation , Hippocampus/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis
2.
Nat Aging ; 4(1): 14-26, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38102454

ABSTRACT

Over the past decade, there has been a dramatic increase in efforts to ameliorate aging and the diseases it causes, with transient expression of nuclear reprogramming factors recently emerging as an intriguing approach. Expression of these factors, either systemically or in a tissue-specific manner, has been shown to combat age-related deterioration in mouse and human model systems at the cellular, tissue and organismal level. Here we discuss the current state of epigenetic rejuvenation strategies via partial reprogramming in both mouse and human models. For each classical reprogramming factor, we provide a brief description of its contribution to reprogramming and discuss additional factors or chemical strategies. We discuss what is known regarding chromatin remodeling and the molecular dynamics underlying rejuvenation, and, finally, we consider strategies to improve the practical uses of epigenetic reprogramming to treat aging and age-related diseases, focusing on the open questions and remaining challenges in this emerging field.


Subject(s)
Induced Pluripotent Stem Cells , Rejuvenation , Humans , Animals , Mice , Aging/genetics , Cellular Reprogramming/genetics , Epigenesis, Genetic
3.
Aging Cell ; 20(11): e13499, 2021 11.
Article in English | MEDLINE | ID: mdl-34687484

ABSTRACT

Neural stem cells (NSCs) in the adult and aged brain are largely quiescent, and require transcriptional reprogramming to re-enter the cell cycle. However, the mechanisms underlying these changes and how they are altered with age remain undefined. Here, we identify the chromatin accessibility differences between primary neural stem/progenitor cells in quiescent and activated states. These distinct cellular states exhibit shared and unique chromatin profiles, both associated with gene regulation. Accessible chromatin states specific to activation or quiescence are active enhancers bound by key pro-neurogenic and quiescence factors. In contrast, shared sites are enriched for core promoter elements associated with translation and metabolism. Unexpectedly, through integrated analysis, we find that many sites that become accessible during NSC activation are linked to gene repression and associated with pro-quiescence factors, revealing a novel mechanism that may preserve quiescence re-entry. Furthermore, we report that in aged NSCs, chromatin regions associated with metabolic and transcriptional functions bound by key pro-quiescence transcription factors lose accessibility, suggesting a novel mechanism of age-associated NSC dysfunction. Together, our findings reveal how accessible chromatin states regulate the transcriptional switch between NSC quiescence and activation, and how this switch is affected with age.


Subject(s)
Aging/genetics , Aging/metabolism , Cellular Senescence/genetics , Chromatin/genetics , Chromatin/metabolism , Neural Stem Cells/metabolism , Transcriptional Activation , Animals , Brain/cytology , Brain/metabolism , Cell Cycle/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Cells, Cultured , Chromatin Immunoprecipitation Sequencing/methods , Gene Expression Regulation , Gene Regulatory Networks , Histones/genetics , Histones/metabolism , Mice , Neurogenesis/genetics , Promoter Regions, Genetic/genetics , RNA-Seq/methods
4.
Aging Cancer ; 2(4): 137-159, 2021 Dec.
Article in English | MEDLINE | ID: mdl-36303712

ABSTRACT

Background: Glioblastoma (GBM) is an aggressive, age-associated malignant glioma that contains populations of cancer stem cells. These glioma stem cells (GSCs) evade therapeutic interventions and repopulate tumors due to their existence in a slowly cycling quiescent state. Although aging is well known to increase cancer initiation, the extent to which the mechanisms supporting GSC tumorigenicity are related to physiological aging remains unknown. Aims: Here, we investigate the transcriptional mechanisms by which Forkhead Box O3 (FOXO3), a transcriptional regulator that promotes healthy aging, affects GSC function and the extent to which FOXO3 transcriptional networks are dysregulated in aging and GBM. Methods and results: We performed transcriptome analysis of clinical GBM tumors and observed that high FOXO3 activity is associated with gene expression signatures of stem cell quiescence, reduced oxidative metabolism, and improved patient outcomes. Consistent with these findings, we show that elevated FOXO3 activity significantly reduces the proliferation of GBM-derived GSCs. Using RNA-seq, we find that functional ablation of FOXO3 in GSCs rewires the transcriptional circuitry associated with metabolism, epigenetic stability, quiescence, and differentiation. Since FOXO3 has been implicated in healthy aging, we then investigated the extent to which it regulates common transcriptional programs in aging neural stem cells (NSCs) and GSCs. We uncover a shared transcriptional program and, most strikingly, find that FOXO3-regulated pathways are associated with altered mitochondrial functions in both aging and GBM. Conclusions: This work identifies a FOXO-associated transcriptional program that correlates between GSCs and aging NSCs and is enriched for metabolic and stemness pathways connected with GBM and aging.

5.
Cell Stem Cell ; 26(4): 473-475, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32243805

ABSTRACT

Asymmetric partitioning of damaged proteins is thought to play a key role in preserving stem cell function with age. In this issue of Cell Stem Cell, Morrow et al. (2020) show that vimentin recruits proteasome machinery to aggresomes to control NSC proteostasis during quiescence exit.


Subject(s)
Neural Stem Cells , Prisoners , Humans , Neural Stem Cells/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Vimentin
SELECTION OF CITATIONS
SEARCH DETAIL