Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 575(7784): 674-678, 2019 11.
Article in English | MEDLINE | ID: mdl-31695193

ABSTRACT

Bacteria have evolved sophisticated mechanisms to inhibit the growth of competitors1. One such mechanism involves type VI secretion systems, which bacteria can use to inject antibacterial toxins directly into neighbouring cells. Many of these toxins target the integrity of the cell envelope, but the full range of growth inhibitory mechanisms remains unknown2. Here we identify a type VI secretion effector, Tas1, in the opportunistic pathogen Pseudomonas aeruginosa. The crystal structure of Tas1 shows that it is similar to enzymes that synthesize (p)ppGpp, a broadly conserved signalling molecule in bacteria that modulates cell growth rate, particularly in response to nutritional stress3. However, Tas1 does not synthesize (p)ppGpp; instead, it pyrophosphorylates adenosine nucleotides to produce (p)ppApp at rates of nearly 180,000 molecules per minute. Consequently, the delivery of Tas1 into competitor cells drives rapid accumulation of (p)ppApp, depletion of ATP, and widespread dysregulation of essential metabolic pathways, thereby resulting in target cell death. Our findings reveal a previously undescribed mechanism for interbacterial antagonism and demonstrate a physiological role for the metabolite (p)ppApp in bacteria.


Subject(s)
Adenine Nucleotides/biosynthesis , Bacteria/drug effects , Bacteria/genetics , Bacterial Toxins/pharmacology , Toxins, Biological/toxicity , Adenosine/metabolism , Bacteria/enzymology , Bacteria/growth & development , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Cell Wall/drug effects , Crystallization , Escherichia coli/genetics , Phosphorylation , Pseudomonas aeruginosa , Toxins, Biological/genetics , Type VI Secretion Systems
2.
Nucleic Acids Res ; 51(D1): D690-D699, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36263822

ABSTRACT

The Comprehensive Antibiotic Resistance Database (CARD; card.mcmaster.ca) combines the Antibiotic Resistance Ontology (ARO) with curated AMR gene (ARG) sequences and resistance-conferring mutations to provide an informatics framework for annotation and interpretation of resistomes. As of version 3.2.4, CARD encompasses 6627 ontology terms, 5010 reference sequences, 1933 mutations, 3004 publications, and 5057 AMR detection models that can be used by the accompanying Resistance Gene Identifier (RGI) software to annotate genomic or metagenomic sequences. Focused curation enhancements since 2020 include expanded ß-lactamase curation, incorporation of likelihood-based AMR mutations for Mycobacterium tuberculosis, addition of disinfectants and antiseptics plus their associated ARGs, and systematic curation of resistance-modifying agents. This expanded curation includes 180 new AMR gene families, 15 new drug classes, 1 new resistance mechanism, and two new ontological relationships: evolutionary_variant_of and is_small_molecule_inhibitor. In silico prediction of resistomes and prevalence statistics of ARGs has been expanded to 377 pathogens, 21,079 chromosomes, 2,662 genomic islands, 41,828 plasmids and 155,606 whole-genome shotgun assemblies, resulting in collation of 322,710 unique ARG allele sequences. New features include the CARD:Live collection of community submitted isolate resistome data and the introduction of standardized 15 character CARD Short Names for ARGs to support machine learning efforts.


Subject(s)
Data Curation , Databases, Factual , Drug Resistance, Microbial , Machine Learning , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Likelihood Functions , Software , Molecular Sequence Annotation
3.
J Infect Dis ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38298144

ABSTRACT

BACKGROUND: Macrolide antibiotics, including azithromycin, can reduce under-five mortality rates and treat various infections in children in sub-Saharan Africa. These exposures, however, can select for antibiotic-resistant bacteria in the gut microbiota. METHODS: Our previous randomized controlled trial (RCT) of a rapid-test-and-treat strategy for severe acute diarrhoeal disease in children in Botswana included an intervention (three-day azithromycin dose) group and a control group that received supportive treatment. In this prospective matched cohort study using stools collected at baseline and 60 days after treatment from RCT participants, the collection of antibiotic resistance genes or resistome was compared between groups. RESULTS: Certain macrolide resistance genes increased in prevalence by 13% to 55% at 60 days, without differences in gene presence between the intervention and control groups. These genes were linked to tetracycline resistance genes and mobile genetic elements. CONCLUSIONS: Azithromycin treatment for bacterial diarrhoea for young children in Botswana resulted in similar effects on the gut resistome as the supportive treatment and did not provide additional selective pressure for macrolide resistance gene maintenance. The gut microbiota of these children contains diverse macrolide resistance genes that may be transferred within the gut upon repeated exposures to azithromycin or co-selected by other antibiotics.

4.
J Infect Dis ; 230(1): 239-249, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052715

ABSTRACT

BACKGROUND: Macrolide antibiotics, including azithromycin, can reduce under 5 years of age mortality rates and treat various infections in children in sub-Saharan Africa. These exposures, however, can select for antibiotic-resistant bacteria in the gut microbiota. METHODS: Our previous randomized controlled trial (RCT) of a rapid-test-and-treat strategy for severe acute diarrheal disease in children in Botswana included an intervention (3-day azithromycin dose) group and a control group that received supportive treatment. In this prospective matched cohort study using stools collected at baseline and 60 days after treatment from RCT participants, the collection of antibiotic resistance genes or resistome was compared between groups. RESULTS: Certain macrolide resistance genes increased in prevalence by 13%-55% at 60 days, without differences in gene presence between the intervention and control groups. These genes were linked to tetracycline resistance genes and mobile genetic elements. CONCLUSIONS: Azithromycin treatment for bacterial diarrhea for young children in Botswana resulted in similar effects on the gut resistome as the supportive treatment and did not provide additional selective pressure for macrolide resistance gene maintenance. The gut microbiota of these children contains diverse macrolide resistance genes that may be transferred within the gut upon repeated exposures to azithromycin or coselected by other antibiotics. CLINICAL TRIALS REGISTRATION: NCT02803827.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Diarrhea , Gastrointestinal Microbiome , Humans , Azithromycin/therapeutic use , Azithromycin/administration & dosage , Botswana , Diarrhea/microbiology , Diarrhea/drug therapy , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Child, Preschool , Infant , Prospective Studies , Female , Male , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Drug Resistance, Bacterial/genetics , Feces/microbiology , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
5.
Virol J ; 21(1): 8, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38178158

ABSTRACT

BACKGROUND: The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 virus, emerged in late 2019 and spready globally. Many effects of infection with this pathogen are still unknown, with both chronic and repeated COVID-19 infection producing novel pathologies. CASE PRESENTATION: An immunocompromised patient presented with chronic COVID-19 infection. The patient had history of Hodgkin's lymphoma, treated with chemotherapy and stem cell transplant. During the course of their treatment, eleven respiratory samples from the patient were analyzed by whole-genome sequencing followed by lineage identification. Whole-genome sequencing of the virus present in the patient over time revealed that the patient at various timepoints harboured three different lineages of the virus. The patient was initially infected with the B.1.1.176 lineage before coinfection with BA.1. When the patient was coinfected with both B.1.1.176 and BA.1, the viral populations were found in approximately equal proportions within the patient based on sequencing read abundance. Upon further sampling, the lineage present within the patient during the final two timepoints was found to be BA.2.9. The patient eventually developed respiratory failure and died. CONCLUSIONS: This case study shows an example of the changes that can happen within an immunocompromised patient who is infected with COVID-19 multiple times. Furthermore, this case demonstrates how simultaneous coinfection with two lineages of COVID-19 can lead to unclear lineage assignment by standard methods, which are resolved by further investigation. When analyzing chronic COVID-19 infection and reinfection cases, care must be taken to properly identify the lineages of the virus present.


Subject(s)
COVID-19 , Coinfection , Humans , COVID-19/complications , Pandemics , SARS-CoV-2 , Immunocompromised Host
6.
Clin Microbiol Rev ; 35(3): e0017921, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35612324

ABSTRACT

Antimicrobial resistance (AMR) is a global health crisis that poses a great threat to modern medicine. Effective prevention strategies are urgently required to slow the emergence and further dissemination of AMR. Given the availability of data sets encompassing hundreds or thousands of pathogen genomes, machine learning (ML) is increasingly being used to predict resistance to different antibiotics in pathogens based on gene content and genome composition. A key objective of this work is to advocate for the incorporation of ML into front-line settings but also highlight the further refinements that are necessary to safely and confidently incorporate these methods. The question of what to predict is not trivial given the existence of different quantitative and qualitative laboratory measures of AMR. ML models typically treat genes as independent predictors, with no consideration of structural and functional linkages; they also may not be accurate when new mutational variants of known AMR genes emerge. Finally, to have the technology trusted by end users in public health settings, ML models need to be transparent and explainable to ensure that the basis for prediction is clear. We strongly advocate that the next set of AMR-ML studies should focus on the refinement of these limitations to be able to bridge the gap to diagnostic implementation.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Machine Learning
7.
Emerg Infect Dis ; 29(7): 1386-1396, 2023 07.
Article in English | MEDLINE | ID: mdl-37308158

ABSTRACT

Isolating and characterizing emerging SARS-CoV-2 variants is key to understanding virus pathogenesis. In this study, we isolated samples of the SARS-CoV-2 R.1 lineage, categorized as a variant under monitoring by the World Health Organization, and evaluated their sensitivity to neutralizing antibodies and type I interferons. We used convalescent serum samples from persons in Canada infected either with ancestral virus (wave 1) or the B.1.1.7 (Alpha) variant of concern (wave 3) for testing neutralization sensitivity. The R.1 isolates were potently neutralized by both the wave 1 and wave 3 convalescent serum samples, unlike the B.1.351 (Beta) variant of concern. Of note, the R.1 variant was significantly more resistant to type I interferons (IFN-α/ß) than was the ancestral isolate. Our study demonstrates that the R.1 variant retained sensitivity to neutralizing antibodies but evolved resistance to type I interferons. This critical driving force will influence the trajectory of the pandemic.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2/genetics , Interferon Type I/genetics , Antibodies, Neutralizing , COVID-19 Serotherapy , Canada/epidemiology , Antibodies, Viral , Spike Glycoprotein, Coronavirus
8.
J Infect Dis ; 225(5): 768-776, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34850051

ABSTRACT

BACKGROUND: We determined the burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in air and on surfaces in rooms of patients hospitalized with coronavirus disease 2019 (COVID-19) and investigated patient characteristics associated with SARS-CoV-2 environmental contamination. METHODS: Nasopharyngeal swabs, surface, and air samples were collected from the rooms of 78 inpatients with COVID-19 at 6 acute care hospitals in Toronto from March to May 2020. Samples were tested for SARS-CoV-2 ribonucleic acid (RNA), cultured to determine potential infectivity, and whole viral genomes were sequenced. Association between patient factors and detection of SARS-CoV-2 RNA in surface samples were investigated. RESULTS: Severe acute respiratory syndrome coronavirus 2 RNA was detected from surfaces (125 of 474 samples; 42 of 78 patients) and air (3 of 146 samples; 3 of 45 patients); 17% (6 of 36) of surface samples from 3 patients yielded viable virus. Viral sequences from nasopharyngeal and surface samples clustered by patient. Multivariable analysis indicated hypoxia at admission, polymerase chain reaction-positive nasopharyngeal swab (cycle threshold of ≤30) on or after surface sampling date, higher Charlson comorbidity score, and shorter time from onset of illness to sampling date were significantly associated with detection of SARS-CoV-2 RNA in surface samples. CONCLUSIONS: The infrequent recovery of infectious SARS-CoV-2 virus from the environment suggests that the risk to healthcare workers from air and near-patient surfaces in acute care hospital wards is likely limited.


Subject(s)
COVID-19 , Nasopharynx/virology , Respiratory Aerosols and Droplets , SARS-CoV-2/isolation & purification , Adult , Aged , Air Microbiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Nucleic Acid Testing , Canada/epidemiology , Environmental Exposure , Health Personnel , Humans , Inpatients , Middle Aged , Pandemics/prevention & control , SARS-CoV-2/genetics
9.
Opt Express ; 30(15): 27285-27292, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236902

ABSTRACT

Mid-IR is a useful wavelength range for both science and military applications due to its low atmospheric attenuation and ability to be used for passive detection. However, many solutions for detecting light in this spectral region need to be operated at cryogenic temperatures as their required narrow bandgaps suffer from carrier recombination and band-to-band tunneling at room temperature leading to high dark currents. These problems can be alleviated by using a separate absorption, charge, and multiplication avalanche photodiode. We have recently demonstrated such a device with a 3-µm cutoff using Al0.15In0.85As0.77Sb0.23, as the absorber, grown on GaSb. Here we investigate Al0.15In0.85As0.77Sb0.23 as a simple PIN homojunction and provide metrics to aid in future designs using this material. PL spectrum measurements indicate a bandgap of 2.94 µm at 300 K. External quantum efficiencies of 39% and 33% are achieved at 1.55 µm and 2 µm respectively. Between 180 K and 280 K the activation energy is ∼0.22 eV, roughly half the bandgap of Al0.15In0.85As0.77Sb0.23, indicating thermal generation is dominant.

10.
Nucleic Acids Res ; 48(D1): D517-D525, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31665441

ABSTRACT

The Comprehensive Antibiotic Resistance Database (CARD; https://card.mcmaster.ca) is a curated resource providing reference DNA and protein sequences, detection models and bioinformatics tools on the molecular basis of bacterial antimicrobial resistance (AMR). CARD focuses on providing high-quality reference data and molecular sequences within a controlled vocabulary, the Antibiotic Resistance Ontology (ARO), designed by the CARD biocuration team to integrate with software development efforts for resistome analysis and prediction, such as CARD's Resistance Gene Identifier (RGI) software. Since 2017, CARD has expanded through extensive curation of reference sequences, revision of the ontological structure, curation of over 500 new AMR detection models, development of a new classification paradigm and expansion of analytical tools. Most notably, a new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes. By adding these resistance variants to CARD, we are able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants. Here, we describe updates and recent expansions to CARD and its biocuration process, including new resources for community biocuration of AMR molecular reference data.


Subject(s)
Databases, Genetic , Drug Resistance, Bacterial , Genes, Bacterial , Software , Bacteria/drug effects , Bacteria/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
11.
Virol J ; 18(1): 166, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34389034

ABSTRACT

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed interest in virus evolution and cross-species transmission. While all known human coronaviruses (HCoVs) are speculated to have originated in animals, very little is known about their evolutionary history and factors that enable some CoVs to co-exist with humans as low pathogenic and endemic infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others, such as SARS-CoV, MERS-CoV and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the origins of all known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolutionary trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants of concern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on virus transmission, pathogenicity, and neutralization by natural or vaccine-mediated immunity.


Subject(s)
COVID-19 Vaccines , COVID-19/virology , SARS-CoV-2/genetics , Animals , COVID-19/transmission , Coronavirus 229E, Human/genetics , Coronavirus 229E, Human/immunology , Coronavirus 229E, Human/pathogenicity , Coronavirus NL63, Human/genetics , Coronavirus NL63, Human/immunology , Coronavirus NL63, Human/pathogenicity , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/pathogenicity , Humans , Immunity , Mutation , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
12.
BMC Med Educ ; 21(1): 570, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34758814

ABSTRACT

BACKGROUND: As the COVID-19 pandemic heightened, infection control and prevention experts recommended clinical training opportunities be modified or discontinued, substantially impacting the function of clinical or medical teaching units (CTU). A CTU is structured to involve medical learners such that they become active participants of the health care team. Since a review of the literature demonstrates a paucity of data to guide pediatric CTU implementation during pandemic phases, we developed and disseminated a survey to assess Canadian practices. METHOD: A group of infectious disease specialists and pediatric hospitalists developed, tested, and disseminated surveys to understand CTU clinical rounding and teaching practices during the waves of the COVID-19 pandemic. RESULT: Our surveys demonstrate the variability in adapting rounding practices during this pandemic and highlights the opportunities to share our approaches and lessons learned to optimize learner experience and patient centered care during unprecedented times in our academic hospitals. We also show the pragmatic implementation of our new pediatric hospital CTU process that was informed by our survey results. CONCLUSION: Our study demonstrates the variability in adapting rounding practices during this pandemic and highlights the opportunities to share our approaches and lessons learned to optimize learner experience and patient centered care during unprecedented times in our academic hospitals.


Subject(s)
COVID-19 , Pandemics , Canada/epidemiology , Child , Hospitals, Pediatric , Humans , Pandemics/prevention & control , SARS-CoV-2
13.
Emerg Infect Dis ; 26(9): 2054-2063, 2020 09.
Article in English | MEDLINE | ID: mdl-32558639

ABSTRACT

Since its emergence in Wuhan, China, in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected ≈6 million persons worldwide. As SARS-CoV-2 spreads across the planet, we explored the range of human cells that can be infected by this virus. We isolated SARS-CoV-2 from 2 infected patients in Toronto, Canada; determined the genomic sequences; and identified single-nucleotide changes in representative populations of our virus stocks. We also tested a wide range of human immune cells for productive infection with SARS-CoV-2. We confirm that human primary peripheral blood mononuclear cells are not permissive for SARS-CoV-2. As SARS-CoV-2 continues to spread globally, it is essential to monitor single-nucleotide polymorphisms in the virus and to continue to isolate circulating viruses to determine viral genotype and phenotype by using in vitro and in vivo infection models.


Subject(s)
Betacoronavirus , Coronavirus Infections/virology , Leukocytes, Mononuclear/virology , Pneumonia, Viral/virology , Virus Replication/genetics , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , DNA, Viral/genetics , DNA, Viral/isolation & purification , Genotype , Humans , Kinetics , Pandemics , Polymorphism, Single Nucleotide , SARS-CoV-2 , Whole Genome Sequencing
14.
J Gen Virol ; 101(12): 1251-1260, 2020 12.
Article in English | MEDLINE | ID: mdl-32902372

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged to cause widespread infections in humans. SARS-CoV-2 infections have been reported in the Kingdom of Saudi Arabia, where Middle East respiratory syndrome coronavirus (MERS-CoV) causes seasonal outbreaks with a case fatality rate of ~37 %. Here we show that there exists a theoretical possibility of future recombination events between SARS-CoV-2 and MERS-CoV RNA. Through computational analyses, we have identified homologous genomic regions within the ORF1ab and S genes that could facilitate recombination, and have analysed co-expression patterns of the cellular receptors for SARS-CoV-2 and MERS-CoV, ACE2 and DPP4, respectively, to identify human anatomical sites that could facilitate co-infection. Furthermore, we have investigated the likely susceptibility of various animal species to MERS-CoV and SARS-CoV-2 infection by comparing known virus spike protein-receptor interacting residues. In conclusion, we suggest that a recombination between SARS-CoV-2 and MERS-CoV RNA is possible and urge public health laboratories in high-risk areas to develop diagnostic capability for the detection of recombined coronaviruses in patient samples.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/genetics , Reassortant Viruses , SARS-CoV-2/genetics , Animals , Base Sequence , Coinfection , Gene Expression Regulation, Viral , Genome, Viral , Host Specificity , Humans , Models, Molecular , Phylogeny , Protein Conformation , Receptors, Cell Surface , Recombination, Genetic , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
15.
Article in English | MEDLINE | ID: mdl-31611361

ABSTRACT

Identification of the nucleotide sequences encoding antibiotic resistance elements and determination of their association with antibiotic resistance are critical to improve surveillance and monitor trends in antibiotic resistance. Current methods to study antibiotic resistance in various environments rely on extensive deep sequencing or laborious culturing of fastidious organisms, both of which are heavily time-consuming operations. An accurate and sensitive method to identify both rare and common resistance elements in complex metagenomic samples is needed. Referencing the sequences in the Comprehensive Antibiotic Resistance Database, we designed a set of 37,826 probes to specifically target over 2,000 nucleotide sequences associated with antibiotic resistance in clinically relevant bacteria. Testing of this probe set on DNA libraries generated from multidrug-resistant bacteria to selectively capture resistance genes reproducibly produced higher numbers of reads on target at a greater length of coverage than shotgun sequencing. We also identified additional resistance gene sequences from human gut microbiome samples that sequencing alone was not able to detect. Our method to capture the resistome enables a sensitive means of gene detection in diverse environments where genes encoding antibiotic resistance represent less than 0.1% of the metagenome.


Subject(s)
Drug Resistance, Bacterial/genetics , Metagenome , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , DNA Probes/genetics , Databases, Genetic , Drug Resistance, Multiple, Bacterial/genetics , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Genome, Bacterial , Humans , Metagenomics/methods , Microbiota/drug effects , Microbiota/genetics , Whole Genome Sequencing
16.
Nucleic Acids Res ; 45(D1): D566-D573, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27789705

ABSTRACT

The Comprehensive Antibiotic Resistance Database (CARD; http://arpcard.mcmaster.ca) is a manually curated resource containing high quality reference data on the molecular basis of antimicrobial resistance (AMR), with an emphasis on the genes, proteins and mutations involved in AMR. CARD is ontologically structured, model centric, and spans the breadth of AMR drug classes and resistance mechanisms, including intrinsic, mutation-driven and acquired resistance. It is built upon the Antibiotic Resistance Ontology (ARO), a custom built, interconnected and hierarchical controlled vocabulary allowing advanced data sharing and organization. Its design allows the development of novel genome analysis tools, such as the Resistance Gene Identifier (RGI) for resistome prediction from raw genome sequence. Recent improvements include extensive curation of additional reference sequences and mutations, development of a unique Model Ontology and accompanying AMR detection models to power sequence analysis, new visualization tools, and expansion of the RGI for detection of emergent AMR threats. CARD curation is updated monthly based on an interplay of manual literature curation, computational text mining, and genome analysis.


Subject(s)
Computational Biology/methods , Databases, Genetic , Drug Resistance, Microbial , Microbiology , Biological Ontologies , Data Curation , Web Browser
17.
Mol Microbiol ; 103(6): 973-991, 2017 03.
Article in English | MEDLINE | ID: mdl-27997726

ABSTRACT

Type III Secretion Systems (T3SSs) are structurally conserved nanomachines that span the inner and outer bacterial membranes, and via a protruding needle complex contact host cell membranes and deliver type III effector proteins. T3SS are phylogenetically divided into several families based on structural basal body components. Here we have studied the evolutionary and functional conservation of four T3SS proteins from the Inv/Mxi-Spa family: a cytosolic chaperone, two hydrophobic translocators that form a plasma membrane-integral pore, and the hydrophilic 'tip complex' translocator that connects the T3SS needle to the translocon pore. Salmonella enterica serovar Typhimurium (S. Typhimurium), a common cause of food-borne gastroenteritis, possesses two T3SSs, one belonging to the Inv/Mxi-Spa family. We used invasion-deficient S. Typhimurium mutants as surrogates for expression of translocator orthologs identified from an extensive phylogenetic analysis, and type III effector translocation and host cell invasion as a readout for complementation efficiency, and identified several Inv/Mxi-Spa orthologs that can functionally substitute for the S. Typhimurium chaperone and translocator proteins. Functional complementation correlates with amino acid sequence identity between orthologs, but varies considerably between the four proteins. This is the first in-depth survey of the functional interchangeability of Inv/Mxi-Spa T3SS proteins acting directly at the host-pathogen interface.


Subject(s)
Carrier Proteins/metabolism , Cell Membrane/metabolism , Molecular Chaperones/metabolism , Salmonella typhimurium/metabolism , Type III Secretion Systems/metabolism , Amino Acid Sequence , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Bacterial , HeLa Cells , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Chaperones/genetics , Type III Secretion Systems/genetics
18.
Nucleic Acids Res ; 44(17): 8442-55, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27484475

ABSTRACT

YphC and YsxC are GTPases in Bacillus subtilis that facilitate the assembly of the 50S ribosomal subunit, however their roles in this process are still uncharacterized. To explore their function, we used strains in which the only copy of the yphC or ysxC genes were under the control of an inducible promoter. Under depletion conditions, they accumulated incomplete ribosomal subunits that we named 45SYphC and 44.5SYsxC particles. Quantitative mass spectrometry analysis and the 5-6 Å resolution cryo-EM maps of the 45SYphC and 44.5SYsxC particles revealed that the two GTPases participate in the maturation of the central protuberance, GTPase associated region and key RNA helices in the A, P and E functional sites of the 50S subunit. We observed that YphC and YsxC bind specifically to the two immature particles, suggesting that they represent either on-pathway intermediates or that their structure has not significantly diverged from that of the actual substrate. These results describe the nature of these immature particles, a widely used tool to study the assembly process of the ribosome. They also provide the first insights into the function of YphC and YsxC in 50S subunit assembly and are consistent with this process occurring through multiple parallel pathways, as it has been described for the 30S subunit.


Subject(s)
Bacterial Proteins/metabolism , GTP Phosphohydrolases/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Bacterial/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Cryoelectron Microscopy , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/ultrastructure , Kinetics , Mass Spectrometry , Protein Conformation , Protein Structure, Secondary , Protein Subunits/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/ultrastructure , Ribosome Subunits, Large, Bacterial/ultrastructure
19.
Nucleic Acids Res ; 43(W1): W104-8, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25916842

ABSTRACT

IslandViewer (http://pathogenomics.sfu.ca/islandviewer) is a widely used web-based resource for the prediction and analysis of genomic islands (GIs) in bacterial and archaeal genomes. GIs are clusters of genes of probable horizontal origin, and are of high interest since they disproportionately encode genes involved in medically and environmentally important adaptations, including antimicrobial resistance and virulence. We now report a major new release of IslandViewer, since the last release in 2013. IslandViewer 3 incorporates a completely new genome visualization tool, IslandPlot, enabling for the first time interactive genome analysis and gene search capabilities using synchronized circular, horizontal and vertical genome views. In addition, more curated virulence factors and antimicrobial resistance genes have been incorporated, and homologs of these genes identified in closely related genomes using strict filters. Pathogen-associated genes have been re-calculated for all pre-computed complete genomes. For user-uploaded genomes to be analysed, IslandViewer 3 can also now handle incomplete genomes, with an improved queuing system on compute nodes to handle user demand. Overall, IslandViewer 3 represents a significant new version of this GI analysis software, with features that may make it more broadly useful for general microbial genome analysis and visualization.


Subject(s)
Genome, Archaeal , Genome, Bacterial , Genomic Islands , Software , Computer Graphics , Drug Resistance, Microbial/genetics , Genomics , Internet , Molecular Sequence Annotation , Virulence Factors/genetics
20.
Mol Ecol ; 25(17): 4355-67, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27376487

ABSTRACT

Genes of the major histocompatibility complex (MHC) exhibit heterozygote advantage in immune defence, which in turn can select for MHC-disassortative mate choice. However, many species lack this expected pattern of MHC-disassortative mating. A possible explanation lies in evolutionary processes following gene duplication: if two duplicated MHC genes become functionally diverged from each other, offspring will inherit diverse multilocus genotypes even under random mating. We used locus-specific primers for high-throughput sequencing of two expressed MHC Class II B genes in Leach's storm-petrels, Oceanodroma leucorhoa, and found that exon 2 alleles fall into two gene-specific monophyletic clades. We tested for disassortative vs. random mating at these two functionally diverged Class II B genes, using multiple metrics and different subsets of exon 2 sequence data. With good statistical power, we consistently found random assortment of mates at MHC. Despite random mating, birds had MHC genotypes with functionally diverged alleles, averaging 13 amino acid differences in pairwise comparisons of exon 2 alleles within individuals. To test whether this high MHC diversity in individuals is driven by evolutionary divergence of the two duplicated genes, we built a phylogenetic permutation model. The model showed that genotypic diversity was strongly impacted by sequence divergence between the most common allele of each gene, with a smaller additional impact of monophyly of the two genes. Divergence of allele sequences between genes may have reduced the benefits of actively seeking MHC-dissimilar mates, in which case the evolutionary history of duplicated genes is shaping the adaptive landscape of sexual selection.


Subject(s)
Birds/genetics , Gene Duplication , Genes, MHC Class II , Phylogeny , Alleles , Animals , Breeding , Evolution, Molecular , Genotype , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL