Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Phys Chem A ; 127(25): 5511-5519, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37318142

ABSTRACT

Solution-state 2D correlation experiments increase signal-to-noise, provide improved resolution, and inform about molecular connectivity. NMR experiments are compromised when the nuclei have broad chemical shift ranges that exceed the bandwidth of the experiment. Spectra acquired under these conditions are unphasable and artifact-prone, and peaks may disappear from the spectrum altogether. Existing remedies provide usable spectra only in specific experimental contexts. Here, we introduce a general broadband strategy that leads to a library of high performing NMR experiments. We achieve arbitrary and independent evolution of NMR interactions by only changing delays in our pulse block, letting the block replace inversion elements in any NMR experiment. The experiments improve the experimental bandwidth for both nuclei by an order of magnitude over conventional sequences, covering chemical shift ranges of most molecules, even at ultrahigh field. This library enables robust spectroscopy of molecules such as perfluorinated oils (19F{13C}) and fluorophosphorous compounds in battery electrolytes (19F{31P}).

2.
Nanotechnology ; 32(50)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34315151

ABSTRACT

A stable solid electrolyte interphase (SEI) layer is key to high performing lithium ion and lithium metal batteries for metrics such as calendar and cycle life. The SEI must be mechanically robust to withstand large volumetric changes in anode materials such as lithium and silicon, so understanding the mechanical properties and behavior of the SEI is essential for the rational design of artificial SEI and anode form factors. The mechanical properties and mechanical failure of the SEI are challenging to study, because the SEI is thin at only ~10-200 nm thick and is air sensitive. Furthermore, the SEI changes as a function of electrode material, electrolyte and additives, temperature, potential, and formation protocols. A variety ofin situandex situtechniques have been used to study the mechanics of the SEI on a variety of lithium ion battery anode candidates; however, there has not been a succinct review of the findings thus far. Because of the difficulty of isolating the true SEI and its mechanical properties, there have been a limited number of studies that can fully de-convolute the SEI from the anode it forms on. A review of past research will be helpful for culminating current knowledge and helping to inspire new innovations to better quantify and understand the mechanical behavior of the SEI. This review will summarize the different experimental and theoretical techniques used to study the mechanics of SEI on common lithium battery anodes and their strengths and weaknesses.

3.
Polymers (Basel) ; 16(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39000618

ABSTRACT

Realizing rechargeable cells with practical energy and power density requires electrodes with high active material loading, a remaining challenge for solid-state batteries. Here, we present a new strategy based on ionogel-derived solid-state electrolytes (SSEs) to form composite electrodes that enable high active material loading (>10 mg/cm2, ~9 mA/cm2 at 1C) in a scalable approach for fabricating Li-ion cells. By tuning the precursor and active materials composition incorporated into the composite lithium titanate electrodes, we achieve near-theoretical capacity utilization at C/5 rates and cells capable of stable cycling at 5.85 mA/cm2 (11.70 A/g) with over 99% average Coulombic efficiency at room temperature. Finally, we demonstrate a complete polymeric solid-state cell with a composite anode and a composite lithium iron phosphate cathode with ionogel SSEs, which is capable of stable cycling at a 1C rate.

4.
ACS Appl Mater Interfaces ; 16(15): 19663-19671, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38578233

ABSTRACT

Silicon is a promising next-generation anode to increase energy density over commercial graphite anodes, but calendar life remains problematic. In this work, scanning electrochemical microscopy was used to track the site-specific reactivity of a silicon thin film surface over time to determine if undesirable Faradaic reactions were occurring at the formed solid electrolyte interphase (SEI) during calendar aging in four case scenarios: formation between 1.5 V and 100 mV with subsequent rest starting at (1) 1.5 V and (2) 100 mV and formation between 0.75 V and 100 mV with subsequent rest starting at (3) 0.75 V and (4) 100 mV. In all cases, the electrical passivation of silicon decreased with increasing time and potential relative to Li/Li+ over a 3 day period. Along with the decrease in passivation, the homogeneity of passivation over a 500 µm2 area decreased with time. Despite some local "hot spots" of reactivity, the areal uniformity of passivation suggests global SEI failure (e.g., SEI dissolution) rather than localized (e.g., cracking) failure. The silicon delithiated to 1.5 V vs Li/Li+ was less passivated than the lithiated silicon (at the beginning of rest, the forward rate constants, kf, for ferrocene redox were 7.19 × 10-5 and 3.17 × 10-7 m/s, respectively) and was also found to be more reactive than the pristine silicon surface (kf of 5 × 10-5 m/s). This reactivity was likely the result of SEI oxidation. When the cell was only delithiated up to 0.75 V versus Li/Li+, the surface was still passivating (kf of 6.11 × 10-6 m/s), but still less so than the lithiated surface (kf of 3.03 × 10-9 m/s). This indicates that the potential of the anode should be kept at or below ∼0.75 V vs Li/Li+ to prevent decreasing SEI passivation. This information will help with tuning the voltage windows for prelithiation in Si half cells and the operating voltage of Si full cells to optimize calendar life. The results provided should encourage the research community to investigate chemical, rather than mechanical, modes of failure during calendar aging and to stop using the typical convention of 1.5 V as a cutoff potential for cycling Si in half cells.

SELECTION OF CITATIONS
SEARCH DETAIL