Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 111(7): 1330-1351, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38815585

ABSTRACT

Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.


Subject(s)
Epilepsy , Neurodevelopmental Disorders , Humans , Male , Neurodevelopmental Disorders/genetics , Female , Epilepsy/genetics , Child , Child, Preschool , DNA Methylation/genetics , Histones/metabolism , Histones/genetics , Phenotype , Intellectual Disability/genetics , Epigenesis, Genetic , Adolescent , Induced Pluripotent Stem Cells/metabolism , Developmental Disabilities/genetics
2.
Am J Hum Genet ; 106(5): 596-610, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32243864

ABSTRACT

Weaver syndrome (WS), an overgrowth/intellectual disability syndrome (OGID), is caused by pathogenic variants in the histone methyltransferase EZH2, which encodes a core component of the Polycomb repressive complex-2 (PRC2). Using genome-wide DNA methylation (DNAm) data for 187 individuals with OGID and 969 control subjects, we show that pathogenic variants in EZH2 generate a highly specific and sensitive DNAm signature reflecting the phenotype of WS. This signature can be used to distinguish loss-of-function from gain-of-function missense variants and to detect somatic mosaicism. We also show that the signature can accurately classify sequence variants in EED and SUZ12, which encode two other core components of PRC2, and predict the presence of pathogenic variants in undiagnosed individuals with OGID. The discovery of a functionally relevant signature with utility for diagnostic classification of sequence variants in EZH2, EED, and SUZ12 supports the emerging paradigm shift for implementation of DNAm signatures into diagnostics and translational research.


Subject(s)
Abnormalities, Multiple/genetics , Congenital Hypothyroidism/genetics , Craniofacial Abnormalities/genetics , DNA Methylation , Enhancer of Zeste Homolog 2 Protein/genetics , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Mutation , Polycomb Repressive Complex 2/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Mosaicism , Mutation, Missense/genetics , Neoplasm Proteins , Reproducibility of Results , Transcription Factors , Young Adult
3.
Genome Res ; 29(2): 159-170, 2019 02.
Article in English | MEDLINE | ID: mdl-30587507

ABSTRACT

Mutations that perturb normal pre-mRNA splicing are significant contributors to human disease. We used exome sequencing data from 7833 probands with developmental disorders (DDs) and their unaffected parents, as well as more than 60,000 aggregated exomes from the Exome Aggregation Consortium, to investigate selection around the splice sites and quantify the contribution of splicing mutations to DDs. Patterns of purifying selection, a deficit of variants in highly constrained genes in healthy subjects, and excess de novo mutations in patients highlighted particular positions within and around the consensus splice site of greater functional relevance. By using mutational burden analyses in this large cohort of proband-parent trios, we could estimate in an unbiased manner the relative contributions of mutations at canonical dinucleotides (73%) and flanking noncanonical positions (27%), and calculate the positive predictive value of pathogenicity for different classes of mutations. We identified 18 patients with likely diagnostic de novo mutations in dominant DD-associated genes at noncanonical positions in splice sites. We estimate 35%-40% of pathogenic variants in noncanonical splice site positions are missing from public databases.


Subject(s)
Developmental Disabilities/genetics , Mutation , RNA Splice Sites , Exome , Humans , Exome Sequencing
4.
Clin Genet ; 102(1): 72-77, 2022 07.
Article in English | MEDLINE | ID: mdl-35347702

ABSTRACT

Pathogenic variants in IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause a variety of neurodevelopmental disorders, with intellectual disability as a uniform feature. We report five cases, each with a novel missense variant in the pleckstrin homology (PH) domain of the IQSEC2 protein. Male patients all present with moderate to profound intellectual disability, significant delays or absent language and speech and variable seizures. We describe the phenotypic spectrum associated with missense variants in PH domain of IQSEC2, further delineating the genotype-phenotype correlation for this X-linked gene.


Subject(s)
Brain Diseases , Intellectual Disability , Guanine Nucleotide Exchange Factors/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Mutation , Phenotype , Pleckstrin Homology Domains
5.
Am J Med Genet A ; 188(3): 959-964, 2022 03.
Article in English | MEDLINE | ID: mdl-34904380

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant multisystemic vascular dysplasia, characterized by arteriovenous malformations (AVMs), mucocutaneous telangiectasia and nosebleeds. HHT is caused by a heterozygous null allele in ACVRL1, ENG, or SMAD4, which encode proteins mediating bone morphogenetic protein (BMP) signaling. Several missense and stop-gain variants identified in GDF2 (encoding BMP9) have been reported to cause a vascular anomaly syndrome similar to HHT, however none of these patients met diagnostic criteria for HHT. HHT families from UK NHS Genomic Medicine Centres were recruited to the Genomics England 100,000 Genomes Project. Whole genome sequencing and tiering protocols identified a novel, heterozygous GDF2 sequence variant in all three affected members of one HHT family who had previously screened negative for ACVRL1, ENG, and SMAD4. All three had nosebleeds and typical HHT telangiectasia, and the proband also had severe pulmonary AVMs from childhood. In vitro studies showed the mutant construct expressed the proprotein but lacked active mature BMP9 dimer, suggesting the mutation disrupts correct cleavage of the protein. Plasma BMP9 levels in the patients were significantly lower than controls. In conclusion, we propose that this heterozygous GDF2 variant is a rare cause of HHT associated with pulmonary AVMs.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Activin Receptors, Type II/genetics , Arteriovenous Fistula , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics , Child , Endoglin/genetics , Endoglin/metabolism , Epistaxis , Growth Differentiation Factor 2/genetics , Humans , Mutation , Pulmonary Artery/abnormalities , Pulmonary Veins/abnormalities , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology
6.
Am J Hum Genet ; 100(1): 138-150, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-28017370

ABSTRACT

Early B cell factor 3 (EBF3) is an atypical transcription factor that is thought to influence the laminar formation of the cerebral cortex. Here, we report that de novo mutations in EBF3 cause a complex neurodevelopmental syndrome. The mutations were identified in two large-scale sequencing projects: the UK Deciphering Developmental Disorders (DDD) study and the Canadian Clinical Assessment of the Utility of Sequencing and Evaluation as a Service (CAUSES) study. The core phenotype includes moderate to severe intellectual disability, and many individuals exhibit cerebellar ataxia, subtle facial dysmorphism, strabismus, and vesicoureteric reflux, suggesting that EBF3 has a widespread developmental role. Pathogenic de novo variants identified in EBF3 include multiple loss-of-function and missense mutations. Structural modeling suggested that the missense mutations affect DNA binding. Functional analysis of mutant proteins with missense substitutions revealed reduced transcriptional activities and abilities to form heterodimers with wild-type EBF3. We conclude that EBF3, a transcription factor previously unknown to be associated with human disease, is important for brain and other organ development and warrants further investigation.


Subject(s)
Mutation , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Adolescent , Age of Onset , Ataxia/genetics , Canada , Child , DNA/metabolism , Developmental Disabilities/genetics , Face/abnormalities , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Male , Mutation, Missense/genetics , Strabismus/genetics , Syndrome , Transcription Factors/metabolism , United Kingdom
7.
Genet Med ; 22(10): 1576-1582, 2020 10.
Article in English | MEDLINE | ID: mdl-32572181

ABSTRACT

PURPOSE: Currently, 31 patients with classical-like EDS (clEDS) due to tenascin-X deficiency have been reported in the literature. We report on the clinical and molecular characteristics of 20 additional patients with clEDS to expand knowledge and to enable improved management of this rare genetic disorder. METHODS: Patients diagnosed with clEDS by the national EDS service in the UK (n = 21) and abroad (n = 1) were asked for consent for publication of their clinical and molecular data. RESULTS: Of 22 patients, 20 consented. All patients had typical features of clEDS: joint hypermobility, easy bruising, and skin hyperextensibility without atrophic scars. Importantly, 3/20 patients experienced gastrointestinal complications consisting of small or large bowel ruptures and one esophageal rupture. Other notable observations included two separate occurrences of spontaneous compartment syndrome, suspicion of nonaccidental injury due to significant bruising, and significant clinical variability regarding the debilitating effect of joint dislocations. CONCLUSIONS: We propose a predisposition to tissue fragility, particularly of the gastrointestinal tract in patients with clEDS. As such, clinical and molecular confirmation of this diagnosis is essential. It is recommended to follow up these patients closely to understand the natural history to develop better recommendations for management.


Subject(s)
Ehlers-Danlos Syndrome , Joint Instability , Skin Abnormalities , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Extracellular Matrix , Humans , Joint Instability/diagnosis , Joint Instability/genetics
8.
J Med Genet ; 55(4): 233-239, 2018 04.
Article in English | MEDLINE | ID: mdl-29358271

ABSTRACT

Background Irish Travellers are an endogamous, nomadic, ethnic minority population mostly resident on the island of Ireland with smaller populations in Europe and the USA. High levels of consanguinity result in many rare autosomal recessive disorders. Due to founder effects and endogamy, most recessive disorders are caused by specific homozygous mutations unique to this population. Key clinicians and scientists with experience in managing rare disorders seen in this population have developed a de facto advisory service on differential diagnoses to consider when faced with specific clinical scenarios. Objective(s) To catalogue all known inherited disorders found in the Irish Traveller population. Methods We performed detailed literature and database searches to identify relevant publications and the disease mutations of known genetic disorders found in Irish Travellers. Results We identified 104 genetic disorders: 90 inherited in an autosomal recessive manner; 13 autosomal dominant and one a recurring chromosomal duplication. Conclusion We have collated our experience of inherited disorders found in the Irish Traveller population to make it publically available through this publication to facilitate a targeted genetic approach to diagnostics in this ethnic group.


Subject(s)
Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/genetics , Genetics, Population/classification , Consanguinity , Ethnicity/genetics , Europe/epidemiology , Genetic Diseases, Inborn/classification , Humans , Ireland/epidemiology , Minority Groups , Mutation , White People
9.
J Med Genet ; 55(6): 384-394, 2018 06.
Article in English | MEDLINE | ID: mdl-29386252

ABSTRACT

BACKGROUND: Germline pathogenic variants in SDHB/SDHC/SDHD are the most frequent causes of inherited phaeochromocytomas/paragangliomas. Insufficient information regarding penetrance and phenotypic variability hinders optimum management of mutation carriers. We estimate penetrance for symptomatic tumours and elucidate genotype-phenotype correlations in a large cohort of SDHB/SDHC/SDHD mutation carriers. METHODS: A retrospective survey of 1832 individuals referred for genetic testing due to a personal or family history of phaeochromocytoma/paraganglioma. 876 patients (401 previously reported) had a germline mutation in SDHB/SDHC/SDHD (n=673/43/160). Tumour risks were correlated with in silico structural prediction analyses. RESULTS: Tumour risks analysis provided novel penetrance estimates and genotype-phenotype correlations. In addition to tumour type susceptibility differences for individual genes, we confirmed that the SDHD:p.Pro81Leu mutation has a distinct phenotype and identified increased age-related tumour risks with highly destabilising SDHB missense mutations. By Kaplan-Meier analysis, the penetrance (cumulative risk of clinically apparent tumours) in SDHB and (paternally inherited) SDHD mutation-positive non-probands (n=371/67 with detailed clinical information) by age 60 years was 21.8% (95% CI 15.2% to 27.9%) and 43.2% (95% CI 25.4% to 56.7%), respectively. Risk of malignant disease at age 60 years in non-proband SDHB mutation carriers was 4.2%(95% CI 1.1% to 7.2%). With retrospective cohort analysis to adjust for ascertainment, cumulative tumour risks for SDHB mutation carriers at ages 60 years and 80 years were 23.9% (95% CI 20.9% to 27.4%) and 30.6% (95% CI 26.8% to 34.7%). CONCLUSIONS: Overall risks of clinically apparent tumours for SDHB mutation carriers are substantially lower than initially estimated and will improve counselling of affected families. Specific genotype-tumour risk associations provides a basis for novel investigative strategies into succinate dehydrogenase-related mechanisms of tumourigenesis and the development of personalised management for SDHB/SDHC/SDHD mutation carriers.


Subject(s)
Adrenal Gland Neoplasms/genetics , Membrane Proteins/genetics , Paraganglioma/genetics , Pheochromocytoma/genetics , Succinate Dehydrogenase/genetics , Adrenal Gland Neoplasms/pathology , Age Factors , Aged , Aged, 80 and over , Female , Genetic Association Studies , Genotype , Germ-Line Mutation/genetics , Heterozygote , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Mutation, Missense/genetics , Paraganglioma/pathology , Pheochromocytoma/pathology , Risk Factors , Sex Characteristics
10.
Int J Mol Sci ; 19(8)2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30071673

ABSTRACT

Lymphedema is characterized by chronic swelling of any body part caused by malfunctioning or obstruction in the lymphatic system. Primary lymphedema is often considered genetic in origin. VEGFC, which is a gene encoding the ligand for the vascular endothelial growth factor receptor 3 (VEGFR3/FLT4) and important for lymph vessel development during lymphangiogenesis, has been associated with a specific subtype of primary lymphedema. Through Sanger sequencing of a proband with bilateral congenital pedal edema resembling Milroy disease, we identified a novel mutation (NM_005429.2; c.361+5G>A) in VEGFC. The mutation induced skipping of exon 2 of VEGFC resulting in a frameshift and the introduction of a premature stop codon (p.Ala50ValfsTer18). The mutation leads to a loss of the entire VEGF-homology domain and the C-terminus. Expression of this Vegfc variant in the zebrafish floorplate showed that the splice-site variant significantly reduces the biological activity of the protein. Our findings confirm that the splice-site variant, c.361+5G>A, causes the primary lymphedema phenotype in the proband. We examine the mutations and clinical phenotypes of the previously reported cases to review the current knowledge in this area.


Subject(s)
Arthrogryposis/genetics , Cleft Palate/genetics , Clubfoot/genetics , Frameshift Mutation , Hand Deformities, Congenital/genetics , RNA Splicing/genetics , Vascular Endothelial Growth Factor C/genetics , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Arthrogryposis/metabolism , Arthrogryposis/pathology , Child, Preschool , Cleft Palate/metabolism , Cleft Palate/pathology , Clubfoot/metabolism , Clubfoot/pathology , Female , Hand Deformities, Congenital/metabolism , Hand Deformities, Congenital/pathology , Humans , Infant , Infant, Newborn , Male , Protein Domains , Vascular Endothelial Growth Factor C/metabolism , Zebrafish/genetics , Zebrafish/metabolism
11.
J Med Genet ; 53(3): 152-62, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26543203

ABSTRACT

BACKGROUND: SOX11 is a transcription factor proposed to play a role in brain development. The relevance of SOX11 to human developmental disorders was suggested by a recent report of SOX11 mutations in two patients with Coffin-Siris syndrome. Here we further investigate the role of SOX11 variants in neurodevelopmental disorders. METHODS: We used array based comparative genomic hybridisation and trio exome sequencing to identify children with intellectual disability who have deletions or de novo point mutations disrupting SOX11. The pathogenicity of the SOX11 mutations was assessed using an in vitro gene expression reporter system. Loss-of-function experiments were performed in xenopus by knockdown of Sox11 expression. RESULTS: We identified seven individuals with chromosome 2p25 deletions involving SOX11. Trio exome sequencing identified three de novo SOX11 variants, two missense (p.K50N; p.P120H) and one nonsense (p.C29*). The biological consequences of the missense mutations were assessed using an in vitro gene expression system. These individuals had microcephaly, developmental delay and shared dysmorphic features compatible with mild Coffin-Siris syndrome. To further investigate the function of SOX11, we knocked down the orthologous gene in xenopus. Morphants had significant reduction in head size compared with controls. This suggests that SOX11 loss of function can be associated with microcephaly. CONCLUSIONS: We thus propose that SOX11 deletion or mutation can present with a Coffin-Siris phenotype.


Subject(s)
Abnormalities, Multiple/genetics , Face/abnormalities , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Micrognathism/genetics , Neck/abnormalities , Neurodevelopmental Disorders/genetics , SOXC Transcription Factors/genetics , Sequence Deletion , Abnormalities, Multiple/physiopathology , Adolescent , Adult , Animals , Child , Child, Preschool , Face/physiopathology , Female , Gene Knockdown Techniques , Hand Deformities, Congenital/physiopathology , Humans , Intellectual Disability/physiopathology , Male , Microcephaly , Micrognathism/physiopathology , Neck/physiopathology , Neurodevelopmental Disorders/physiopathology , Xenopus
12.
Am J Med Genet A ; 170(11): 2835-2846, 2016 11.
Article in English | MEDLINE | ID: mdl-27667800

ABSTRACT

KBG syndrome is characterized by short stature, distinctive facial features, and developmental/cognitive delay and is caused by mutations in ANKRD11, one of the ankyrin repeat-containing cofactors. We describe 32 KBG patients aged 2-47 years from 27 families ascertained via two pathways: targeted ANKRD11 sequencing (TS) in a group who had a clinical diagnosis of KBG and whole exome sequencing (ES) in a second group in whom the diagnosis was unknown. Speech delay and learning difficulties were almost universal and variable behavioral problems frequent. Macrodontia of permanent upper central incisors was seen in 85%. Other clinical features included short stature, conductive hearing loss, recurrent middle ear infection, palatal abnormalities, and feeding difficulties. We recognized a new feature of a wide anterior fontanelle with delayed closure in 22%. The subtle facial features of KBG syndrome were recognizable in half the patients. We identified 20 ANKRD11 mutations (18 novel: all truncating) confirmed by Sanger sequencing in 32 patients. Comparison of the two ascertainment groups demonstrated that facial/other typical features were more subtle in the ES group. There were no conclusive phenotype-genotype correlations. Our findings suggest that mutation of ANKRD11 is a common Mendelian cause of developmental delay. Affected patients may not show the characteristic KBG phenotype and the diagnosis is therefore easily missed. We propose updated diagnostic criteria/clinical recommendations for KBG syndrome and suggest that inclusion of ANKRD11 will increase the utility of gene panels designed to investigate developmental delay. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/diagnosis , Bone Diseases, Developmental/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Tooth Abnormalities/diagnosis , Tooth Abnormalities/genetics , Chromosome Deletion , Chromosomes, Human, Pair 16 , Comparative Genomic Hybridization , Facies , Female , Humans , Male , Phenotype , Repressor Proteins/genetics
13.
BMC Med Genet ; 14: 48, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23621912

ABSTRACT

BACKGROUND: COL11A1 is a large complex gene around 250 kb in length and consisting of 68 exons. Pathogenic mutations in the gene can result in Stickler syndrome, Marshall syndrome or Fibrochondrogenesis. Many of the mutations resulting in either Stickler or Marshall syndrome alter splice sites and result in exon skipping, which because of the exon structure of collagen genes usually leaves the message in-frame. The mutant protein then exerts a dominant negative effect as it co-assembles with other collagen gene products. To date only one large deletion of 40 kb in the COL11A1, which was detected by RT-PCR, has been characterized. However, commonly used screening protocols, utilizing genomic amplification and exon sequencing, are unlikely to detect such large deletions. Consequently the frequency of this type of mutation is unknown. CASE PRESENTATIONS: We have used Multiplex Ligation-Dependent Probe Amplification (MLPA) in conjunction with exon amplification and sequencing, to analyze patients with clinical features of Stickler syndrome, and have detected six novel deletions that were not found by exon sequencing alone. CONCLUSION: Exon deletions appear to represent a significant proportion of type 2 Stickler syndrome. This observation was previously unknown and so diagnostic screening of COL11A1 should include assays capable of detecting both large and small deletions, in addition to exon sequencing.


Subject(s)
Collagen Type XI/genetics , Connective Tissue Diseases/genetics , Gene Deletion , Multiplex Polymerase Chain Reaction/methods , Vitreous Detachment/genetics , Adolescent , Adult , Child, Preschool , Collagen Type XI/deficiency , Connective Tissue Diseases/diagnosis , Exons , Female , Gene Frequency , Humans , Infant , Male , Mutation , RNA Splicing , Sequence Analysis, DNA , Vitreous Detachment/diagnosis
14.
Am J Med Genet A ; 161A(12): 2972-80, 2013 12.
Article in English | MEDLINE | ID: mdl-24214728

ABSTRACT

Weaver syndrome, first described in 1974, is characterized by tall stature, a typical facial appearance, and variable intellectual disability. In 2011, mutations in the histone methyltransferase, EZH2, were shown to cause Weaver syndrome. To date, we have identified 48 individuals with EZH2 mutations. The mutations were primarily missense mutations occurring throughout the gene, with some clustering in the SET domain (12/48). Truncating mutations were uncommon (4/48) and only identified in the final exon, after the SET domain. Through analyses of clinical data and facial photographs of EZH2 mutation-positive individuals, we have shown that the facial features can be subtle and the clinical diagnosis of Weaver syndrome is thus challenging, especially in older individuals. However, tall stature is very common, reported in >90% of affected individuals. Intellectual disability is also common, present in ~80%, but is highly variable and frequently mild. Additional clinical features which may help in stratifying individuals to EZH2 mutation testing include camptodactyly, soft, doughy skin, umbilical hernia, and a low, hoarse cry. Considerable phenotypic overlap between Sotos and Weaver syndromes is also evident. The identification of an EZH2 mutation can therefore provide an objective means of confirming a subtle presentation of Weaver syndrome and/or distinguishing Weaver and Sotos syndromes. As mutation testing becomes increasingly accessible and larger numbers of EZH2 mutation-positive individuals are identified, knowledge of the clinical spectrum and prognostic implications of EZH2 mutations should improve.


Subject(s)
Abnormalities, Multiple/genetics , Congenital Hypothyroidism/genetics , Craniofacial Abnormalities/genetics , Growth Disorders/genetics , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Polycomb Repressive Complex 2/genetics , Abnormalities, Multiple/physiopathology , Adolescent , Child , Child, Preschool , Chromosome Deletion , Congenital Hypothyroidism/complications , Congenital Hypothyroidism/physiopathology , Craniofacial Abnormalities/complications , Craniofacial Abnormalities/physiopathology , Developmental Disabilities , Enhancer of Zeste Homolog 2 Protein , Female , Growth Disorders/complications , Growth Disorders/physiopathology , Hand Deformities, Congenital/complications , Hand Deformities, Congenital/physiopathology , Humans , Intellectual Disability/complications , Intellectual Disability/physiopathology , Male , Mutation , Phenotype , Sotos Syndrome/genetics , Sotos Syndrome/physiopathology
15.
Am J Med Genet A ; 158A(5): 1102-10, 2012 May.
Article in English | MEDLINE | ID: mdl-22495892

ABSTRACT

De novo heterozygous mutations in HRAS cause Costello syndrome (CS), a condition with high mortality and morbidity in infancy and early childhood due to cardiac, respiratory, and muscular complications. HRAS mutations predicting p.Gly12Val, p.Gly12Asp, and p.Gly12Cys substitutions have been associated with severe, lethal, CS. We report on molecular, clinical, and pathological findings in patients with mutations predicting HRAS p.Gly12Val that were identified in our clinical molecular genetic testing service. Such mutations were identified in four patients. Remarkably, three were deletion/insertion mutations affecting coding nucleotides 35 and 36. All patients died within 6 postnatal weeks, providing further evidence that p.Gly12Val mutations predict a very poor prognosis. High birth weight, polyhydramnios (and premature birth), cardiac hypertrophy, respiratory distress, muscle weakness, and postnatal growth failure were present. Dysmorphism was subtle or non-specific, with edema, coarsened facial features, prominent forehead, depressed nasal bridge, anteverted nares, and low-set ears. Proximal upper limb shortening, a small bell-shaped chest, talipes, and fixed flexion deformities of the wrists were seen. Neonatal atrial arrhythmia, highly suggestive of CS, was also present in two patients. One patient had congenital alveolar dysplasia, and another, born after 36 weeks' gestation, bronchopulmonary dysplasia. A rapidly fatal disease course, and the difficulty of identifying subtle dysmorphism in neonates requiring intensive care, suggest that this condition remains under-recognized, and should enter the differential diagnosis for very sick infants with a range of clinical problems including cardiac hypertrophy and disordered pulmonary development. Clinical management should be informed by knowledge of the poor prognosis of this condition.


Subject(s)
Costello Syndrome/genetics , Genes, ras/genetics , INDEL Mutation , Costello Syndrome/mortality , Diagnosis, Differential , Heart Defects, Congenital , Humans , Infant, Newborn
16.
Gene ; 685: 50-54, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30393191

ABSTRACT

The SRPX2 gene (Sushi-repeat-containing protein, X-linked, 2, OMIM*300642), located on Xq22.1, encodes a secreted protein that is highly expressed in neurons of cerebral cortex. SRPX2 was first implicated in neurodevelopment, learning and rolandic seizure when two patients with potentially pathogenic variants, c.980A>G (p.Asn327Ser) and c.215A>C (p.Tyr72Ser), in SRPX2 gene were identified. Subsequent experimental studies demonstrated that SRPX2 is needed for vocalization and synapse formation in mice, and that both silencing SRPX2 and injecting (p.Asn327Ser) in mouse models results in alteration in neuronal migration in cerebral cortex and epilepsy. A number of studies demonstrated that SRPX2 interacts with FOXP2 (Foxhead box protein P2), a gene responsible for speech and language disorder, and that FoxP2 controls timing and level of expression of SRPX2. Despite the supportive evidence for the role of SRPX2 in speech and language development and disorders, there are questions over its definitive association with neurodevelopmental disorders and epilepsy. In this paper, the role of SRPX2 as one in a network of many genes involved in speech and language is discussed. The goal of this paper is to examine the role of SRPX2 variants through describing two patients with potentially pathogenic variants in SRPX2, c.751G>C (p.Ala251Pro) and c.762G>T (p.Lys254Asn) presenting with language and motor delay, intellectual disability as well as congenital anomalies. We explore the contribution of SRPX2 variants to clinical phenotype in our patients and conclude that these variants at least partially explain the phenotype. Further studies are necessary to establish and confirm the association between SRPX2 and neurodevelopment particularly speech and language development.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Nerve Tissue Proteins/genetics , Neurogenesis/genetics , Alleles , Exome , Genetic Testing , Genotype , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Membrane Proteins , Neoplasm Proteins , Nerve Tissue Proteins/metabolism , Polymorphism, Single Nucleotide , Speech Disorders/genetics , Speech Disorders/metabolism , Speech Disorders/physiopathology
17.
Genome Med ; 11(1): 12, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30819258

ABSTRACT

BACKGROUND: Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities, and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de novo mutations potentially disrupting TCF20 function in patients with ID, ASD, and hypotonia have been reported. TCF20 encodes a transcriptional co-regulator structurally related to RAI1, the dosage-sensitive gene responsible for Smith-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity). METHODS: Genome-wide analyses by exome sequencing (ES) and chromosomal microarray analysis (CMA) identified individuals with heterozygous, likely damaging, loss-of-function alleles in TCF20. We implemented further molecular and clinical analyses to determine the inheritance of the pathogenic variant alleles and studied the spectrum of phenotypes. RESULTS: We report 25 unique inactivating single nucleotide variants/indels (1 missense, 1 canonical splice-site variant, 18 frameshift, and 5 nonsense) and 4 deletions of TCF20. The pathogenic variants were detected in 32 patients and 4 affected parents from 31 unrelated families. Among cases with available parental samples, the variants were de novo in 20 instances and inherited from 4 symptomatic parents in 5, including in one set of monozygotic twins. Two pathogenic loss-of-function variants were recurrent in unrelated families. Patients presented with a phenotype characterized by developmental delay, intellectual disability, hypotonia, variable dysmorphic features, movement disorders, and sleep disturbances. CONCLUSIONS: TCF20 pathogenic variants are associated with a novel syndrome manifesting clinical characteristics similar to those observed in Smith-Magenis syndrome. Together with previously described cases, the clinical entity of TCF20-associated neurodevelopmental disorders (TAND) emerges from a genotype-driven perspective.


Subject(s)
Craniofacial Abnormalities/genetics , Developmental Disabilities/genetics , INDEL Mutation , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Smith-Magenis Syndrome/genetics , Transcription Factors/genetics , Adolescent , Child , Child, Preschool , Craniofacial Abnormalities/pathology , Developmental Disabilities/pathology , Female , Humans , Infant , Intellectual Disability/pathology , Male , Muscle Hypotonia/pathology , Smith-Magenis Syndrome/pathology , Transcription Factors/metabolism , Young Adult
19.
J Clin Endocrinol Metab ; 93(11): 4389-97, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18728167

ABSTRACT

CONTEXT: In autoimmune polyendocrinopathy syndrome type I (APS-I), mutations in the autoimmune regulator gene (AIRE) impair thymic self-tolerance induction in developing T cells. The ensuing autoimmunity particularly targets ectodermal and endocrine tissues, but chronic candidiasis usually comes first. We recently reported apparently APS-I-specific high-titer neutralizing autoantibodies against type I interferons in 100% of Finnish and Norwegian patients, mainly with two prevalent AIRE truncations. OBJECTIVES: Because variability in clinical features and age at onset in APS-I frequently results in unusual presentations, we prospectively checked the diagnostic potential of anti-interferon antibodies in additional APS-I panels with other truncations or rare missense mutations and in disease controls with chronic mucocutaneous candidiasis (CMC) but without either common AIRE mutation. DESIGN: The study was designed to detect autoantibodies against interferon-alpha2 and interferon-omega in antiviral neutralization assays. SETTING AND PATIENTS: Patients included 14 British/Irish, 15 Sardinian, and 10 Southern Italian AIRE-mutant patients with APS-I; also 19 other patients with CMC, including four families with cosegregating thyroid autoimmunity. OUTCOME: The diagnostic value of anti-interferon autoantibodies was assessed. RESULTS: We found antibodies against interferon-alpha2 and/or interferon-omega in all 39 APS-I patients vs. zero of 48 unaffected relatives and zero of 19 British/Irish CMC patients. Especially against interferon-omega, titers were nearly always high, regardless of the exact APS-I phenotype/duration or AIRE genotype, including 12 different AIRE length variants or 10 point substitutions overall (n=174 total). Strikingly, in one family with few typical APS-I features, these antibodies cosegregated over three generations with autoimmune hypothyroidism plus a dominant-negative G228W AIRE substitution. CONCLUSIONS: Otherwise restricted to patients with thymoma and/or myasthenia gravis, these precocious persistent antibodies show 98% or higher sensitivity and APS-I specificity and are thus a simpler diagnostic option than detecting AIRE mutations.


Subject(s)
Autoantibodies/blood , Interferon Type I/immunology , Polyendocrinopathies, Autoimmune/diagnosis , Autoimmune Diseases/blood , Autoimmune Diseases/diagnosis , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Diagnosis, Differential , Humans , Interferon Type I/genetics , Interferon-alpha/genetics , Interferon-alpha/immunology , Myasthenia Gravis/blood , Myasthenia Gravis/diagnosis , Myasthenia Gravis/immunology , Point Mutation , Polyendocrinopathies, Autoimmune/blood , Polyendocrinopathies, Autoimmune/immunology , Sensitivity and Specificity , Syndrome , T-Lymphocytes/immunology , Thyroid Gland/immunology
SELECTION OF CITATIONS
SEARCH DETAIL