Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Publication year range
2.
Macromol Rapid Commun ; 39(17): e1700746, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29333741

ABSTRACT

As the use of low-molecular-weight gelators (LMWGs) as components in single and multicomponent systems for optoelectronic and solar cell applications increases, so does the need for more functional gelators. There are relatively few examples of p-type gelators that can be used in such systems. Here, the synthesis and characterization of three amino-acid-functionalized p-type gelators based on terthiophene, tetrathiafulvalene, and oligo(phenylenevinylene) are described. The cores of these molecules are already used as electron donors in optoelectronic applications. These newly designed molecules can gel water to form highly organized structures, which can be dried into thin films that show p-type behavior.


Subject(s)
Amino Acids/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemical synthesis , Molecular Structure , Molecular Weight
3.
J Nanobiotechnology ; 16(1): 22, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29544545

ABSTRACT

BACKGROUND: Recent work has developed solid drug nanoparticles (SDNs) of efavirenz that have been demonstrated, preclinically, improved oral bioavailability and the potential to enable up to a 50% dose reduction, and is currently being studied in a healthy volunteer clinical trial. Other SDN formulations are being studied for parenteral administration, either as intramuscular long-acting formulations, or for direct administration intravenously. The interaction of nanoparticles with the immunological and haematological systems can be a major barrier to successful translation but has been understudied for SDN formulations. Here we have conducted a preclinical evaluation of efavirenz SDN to assess their potential interaction with these systems. Platelet aggregation and activation, plasma coagulation, haemolysis, complement activation, T cell functionality and phenotype, monocyte derived macrophage functionality, and NK cell function were assessed in primary healthy volunteer samples treated with either aqueous efavirenz or efavirenz SDN. RESULTS: Efavirenz SDNs were shown not to interfere with any of the systems studied in terms of immunostimulation nor immunosuppression. Although efavirenz aqueous solution was shown to cause significant haemolysis ex vivo, efavirenz SDNs did not. No other interaction with haematological systems was observed. Efavirenz SDNs have been demonstrated to be immunologically and haematologically inert in the utilised assays. CONCLUSIONS: Taken collectively, along with the recent observation that lopinavir SDN formulations did not impact immunological responses, these data indicate that this type of nanoformulation does not elicit immunological consequences seen with other types of nanomaterial. The methodologies presented here provide a framework for pre-emptive preclinical characterisation of nanoparticle safety.


Subject(s)
Anti-HIV Agents/pharmacology , Benzoxazines/pharmacology , Drug Carriers , Nanoparticles/chemistry , Platelet Activation/drug effects , Alkynes , Anti-HIV Agents/chemistry , Benzoxazines/chemistry , Cell Line, Tumor , Clinical Trials as Topic , Complement Activation/drug effects , Cyclopropanes , Drug Compounding/methods , Drug Evaluation, Preclinical , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Limulus Test , Lipopolysaccharides/pharmacology , Platelet Aggregation/drug effects , Polyvinyl Alcohol/chemistry , Primary Cell Culture , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Vitamin E/chemistry
4.
Mol Pharm ; 12(10): 3556-68, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26348830

ABSTRACT

Ritonavir is a protease inhibitor utilized primarily as a pharmaco-enhancer with concomitantly administered antiviral drugs including other protease inhibitors. However, poor tolerance, serious side effects, and toxicities associated with drug-drug interactions are common during exposure to ritonavir. The aim of this work was to investigate the impact of nanoformulation on ritonavir pharmacological properties. Emulsion-templated freeze-drying techniques were used to generate ritonavir (10 wt %) solid drug nanoparticle formulations. A total of 68 ritonavir formulations containing various mixtures of excipients were assessed for inhibition of CYP3A4 in baculosomes and primary human hepatocytes. Accumulation and cytotoxicity were assessed in HepG2 (hepatocytes), Caco-2 (intestinal), THP-1 (monocytes), A-THP-1 (macrophage), and CEM (lymphocytes). Transcellular permeation across Caco-2 cells was also assessed. From 68 solid drug nanoparticle formulations tested, 50 (73.5%) for baculosome and 44 (64.7%) for human primary hepatocytes exhibited enhanced CYP3A4 inhibition relative to an aqueous ritonavir solution. Sixty-one (89.7%) and 49 (72%) solid drug nanoformulations had higher apical to basal permeation across Caco-2 cells than aqueous solution of ritonavir after 60 and 120 min, respectively. No significant difference in cellular accumulation was observed for any solid drug nanoparticle for any cell type compared to aqueous ritonavir. However, incubation with the vast majority of solid drug nanoparticle formulations resulted in lower cytotoxicity of ritonavir than detected with an aqueous solution. These data provide in vitro proof of concept for improved inhibition of CYP3A4 by ritonavir through formation of solid drug nanoparticles. Nanodispersions also showed enhanced permeability across Caco-2 cells lower cytotoxicity across hepatic, intestinal, and immune cell types compared to an aqueous solution of ritonavir.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors/pharmacology , HIV Protease Inhibitors/pharmacology , Hepatocytes/drug effects , Nanoparticles/administration & dosage , Ritonavir/pharmacology , Caco-2 Cells/drug effects , Cytochrome P-450 CYP3A/drug effects , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/administration & dosage , Drug Delivery Systems , HIV Protease Inhibitors/administration & dosage , Hep G2 Cells/drug effects , Humans , Ritonavir/administration & dosage
5.
Biomacromolecules ; 16(4): 1157-68, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25714334

ABSTRACT

We report lipase-catalyzed inclusion of p-hydroxy benzylalcohol to peptide bolaamphiphiles. The lipase-catalyzed reactions of peptide bolaamphiphiles with p-hydroxy benzylalcohol generate dynamic combinatorial libraries (DCL) in aqueous medium that mimic the natural dissipative system. The peptide bolaamphiphile 1 (HO-WY-Suc-YW-OH) reacts with p-hydroxy benzylalcohol in the presence of lipase forming an activated diester building block. The activated diester building block self-assembles to produce nanofibrillar thixotropic hydrogel. The subsequent hydrolysis results in the dissipation of energy to form nonassembling bolaamphiphile 1 with collapsed nanofibers. The thixotropic DCL hydrogel matrix is used for 3D cell culture experiments for different periods of time, significantly supporting the cell survival and proliferation of human umbilical cord mesenchymal stem cells.


Subject(s)
Cell Proliferation/drug effects , Furans/chemistry , Hydrogels/chemical synthesis , Lipase/chemistry , Peptides/chemistry , Pyridones/chemistry , Amino Acid Sequence , Biocatalysis , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Mesenchymal Stem Cells/drug effects , Molecular Sequence Data , Polymerization
6.
Heliyon ; 10(12): e32184, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021897

ABSTRACT

Poly(N-isopropylacrylamide) (PNIPAM) nanogels are promising responsive colloidal particles that can be used in pharmaceutical applications as drug carriers. This work investigates the temperature-dependent morphological changes and agglomeration of PNIPAM nanogels in the presence of mono- and multi-valent cationic electrolytes. We described the deswelling, flocculation, thermal reversibility behaviour and aggregated morphology of PNIPAM nanogels over a range of electrolyte concentrations and temperatures revealing the critical transition points from stable suspension to spontaneous agglomeration. We demonstrated that the flocculating ability and the rate of aggregate formation follow the order of deswelling behaviour. Transmission electron microscopy and atomic force microscopy analysis revealed the presence of a shell-like layer with varying density in the multivalent electrolyte solutions when compared to those in aqueous medium. We identified a concentration threshold of the thermally induced reversible aggregation/dispersion for the PNIPAM nanogels in the presence of Na+ and K+ ions at 10 mM, for Mg2+ and Ca2+ ions at 1 mM and for Al3+ ions at 0.1 mM concentrations. Such concentration thresholds indicated the effective destabilization of the electrolyte system with multivalency following the Schulze-Hardy rule. Our findings were supported by applying a Debye screening model that accounts for the shielding effect of multivalent cationic electrolytes on these nanogel systems. Our experiments and the models confirmed the compression of the electric double layer as the valency and ionic strength increased, except for Al3+ at higher concentrations which seemed to disrupt the electrical double layer and cause reversal of zeta potential. Our work highlights the significant impact the presence of multivalent cations can impose on the stability and morphology of nanogels, and this understanding will help in designing responsive nanogel systems based on PNIPAM nanogels.

7.
Polym Chem ; 15(15): 1511-1521, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38633016

ABSTRACT

High-density poly(ethylene) (HDPE) is an important class of polymer used extensively in plastic packaging as well as numerous other applications. HDPE has a structure that consists of crystalline (monoclinic and orthorhombic) and amorphous domains. Here, we exploit a range of approaches focusing on magic angle spinning (MAS) nuclear magnetic resonance (NMR) aimed at comparing the effect of the HDPE sample formulation (cutting, shaving and cryomilling), from the commercially available manufactured pellets, into these domains and their quantification. 13C cross polarisation (CP) experiments reveal that these formulated HDPEs are qualitatively different and 13C CP build-up curves and 13C direct excitation experiments enable the content of each domain to be obtained, pointing to an increase of monoclinic domain at the expense of the orthorhombic one upon increased processing. The crystallinity contents obtained compared, in some cases, favourably with those obtained by differential scanning calorimetry (DSC) data. These results provide evidence that the manner of preparation of HDPE pellets modifies the concentration of the various domains and suggest that care should be taken during processing.

8.
Nanoscale Adv ; 6(2): 669-679, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38235101

ABSTRACT

Lipid nanoparticles have proved an attractive approach for drug delivery; however, the challenges of optimising formulation stability and increasing drug loading have limited progression. In this work, we investigate the role of unpegylated lipid surfactants (helper lipids) in nanoparticle formation and the effect of blending helper lipids with pegylated lipid surfactants on the formation and stability of lipid-based nanoparticles by nanoprecipitation. Furthermore, blends of unpegylated/pegylated lipid surfactants were examined for ability to accommodate higher drug loading formulations by means of a higher weight percentage (wt%) of drug relative to total mass of formulation components (i.e. drug, surfactants and lipids). Characterisation included evaluation of particle diameter, size distribution, drug loading and nanoformulation stability. Our findings demonstrate that the addition of unpegylated lipid surfactant (Lipoid S100) to pegylated lipid surfactant (Brij S20) enhances stability, particularly at higher weight percentages of the core material. This blending approach enables drug loading capacities exceeding 10% in the lipid nanoparticles. Notably, Lipoid S100 exhibited nucleating properties that aided in the formation and stabilisation of the nanoparticles. Furthermore, we examined the incorporation of a model drug into the lipid nanoparticle formulations. Blending the model drug with the core material disrupted the crystallinity of the core, offering additional potential benefits in terms of drug release and stability. This comprehensive investigation provides valuable insights into the interplay between surfactant properties, core material composition, and nanoparticle behaviour. The study enhances our understanding of lipid materials and offers guidance for the design and optimisation of lipid nanoparticle formulations.

9.
J Am Chem Soc ; 135(41): 15290-3, 2013 Oct 16.
Article in English | MEDLINE | ID: mdl-24028380

ABSTRACT

Dynamic nuclear polarization (DNP) solid-state NMR was used to obtain natural abundance (13)C and (15)N CP MAS NMR spectra of microporous organic polymers with excellent signal-to-noise ratio, allowing for unprecedented details in the molecular structure to be determined for these complex polymer networks. Sensitivity enhancements larger than 10 were obtained with bis-nitroxide radical at 14.1 T and low temperature (∼105 K). This DNP MAS NMR approach allows efficient, high-throughput characterization of libraries of porous polymers prepared by combinatorial chemistry methods.


Subject(s)
Polymers/chemistry , Triazines/chemistry , Carbon Isotopes , Magnetic Resonance Spectroscopy , Molecular Structure , Nitrogen Isotopes , Particle Size , Porosity , Surface Properties , Triazines/chemical synthesis
10.
Mol Pharm ; 10(7): 2739-48, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23701529

ABSTRACT

Polymers and surfactants are commonly used as excipients in oral formulations and are generally considered to be inert. However, relatively few studies have assessed their interaction with enzymes involved in the absorption, distribution, metabolism, and elimination of drugs. We have investigated the impact of twenty-three commonly used excipients (ten polymers and thirteen surfactants) on seven cytochrome P450 (CYP450) isoforms using baculosome-derived CYP450 enzymes across a range of concentrations. Time-course fluorescent readings were then taken to generate IC50 (inhibition) or EC50 (activation) values for excipient effects on CYP450 activity. All excipients had an observable effect activity of at least one CYP450 isoform with the majority of excipients altering substrate metabolism of at least 57% of CYP450s studied. In addition, most excipients were capable of inhibiting and increasing activity of several different CYP450 isoforms. Although the majority of these effects required concentrations outside those achievable therapeutically (>100 µM), almost 20% were seen at concentrations below 100 µM, and these results indicate that several excipients have the potential to modify the pharmacokinetics of administered drugs.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Excipients/pharmacology , Excipients/chemistry , Models, Theoretical , Oxidation-Reduction/drug effects , Polymers/pharmacology , Surface-Active Agents/pharmacology
11.
Nanoscale Adv ; 5(7): 1870-1889, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36998665

ABSTRACT

The World Health Organisation (WHO) estimates 15 million babies worldwide are born preterm each year, with 1 million infant mortalities and long-term morbidity in survivors. Whilst the past 40 years have provided some understanding in the causes of preterm birth, along with development of a range of therapeutic options, notably prophylactic use of progesterone or uterine contraction suppressants (tocolytics), the number of preterm births continues to rise. Existing therapeutics used to control uterine contractions are restricted in their clinical use due to pharmacological drawbacks such as poor potency, transfer of drugs to the fetus across the placenta and maternal side effects from activity in other maternal systems. This review focuses on addressing the urgent need for the development of alternative therapeutic systems with improved efficacy and safety for the treatment of preterm birth. We discuss the application of nanomedicine as a viable opportunity to engineer pre-existing tocolytic agents and progestogens into nanoformulations, to improve their efficacy and address current drawbacks to their use. We review different nanomedicines including liposomes, lipid-based carriers, polymers and nanosuspensions highlighting where possible, where these technologies have already been exploited e.g. liposomes, and their significance in improving the properties of pre-existing therapeutic agents within the field of obstetrics. We also highlight where active pharmaceutical agents (APIs) with tocolytic properties have been used for other clinical indications and how these could inform the design of future therapeutics or be repurposed to diversify their application such as for use in preterm birth. Finally we outline and discuss the future challenges.

12.
J Cosmet Dermatol ; 22(1): 79-88, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35384270

ABSTRACT

As the desire and popularity of a tanned appearance continues, the social effects of UV-free tanning are becoming more important. Dihydroxyacetone (DHA) has seen extensive use as the main tanning agent in sunless tanners. The DHA-induced tan is a result of brown melanoidins formed by a non-enzymatic Maillard reaction between DHA and amino acid species found in the stratum corneum. DHA, thereby, provides a safer route to a tanned appearance compared with exposure to ultraviolet radiation. However, DHA is a highly reactive molecule, posing a multitude of challenges for potential product formulations. With their increased use, the safety considerations of topically applied DHA tanners have been investigated. Many different vehicles have been used for topical delivery of DHA, and they are becoming increasingly multifunctional. This review provides a holistic overview of dihydroxyacetone sunless tanning products.


Subject(s)
Dihydroxyacetone , Ultraviolet Rays , Humans , Dihydroxyacetone/pharmacology , Ultraviolet Rays/adverse effects , Epidermis , Amino Acids , Drug Compounding
13.
J Funct Biomater ; 14(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37504841

ABSTRACT

Nanogels are candidates for biomedical applications, and core-shell nanogels offer the potential to tune thermoresponsive behaviour with the capacity for extensive degradation. These properties were achieved by the combination of a core of poly(N-isopropylmethacrylamide) and a shell of poly(N-isopropylacrylamide), both crosslinked with the degradable crosslinker N,N'-bis(acryloyl)cystamine. In this work, the degradation behaviour of these nanogels was characterised using asymmetric flow field flow fractionation coupled with multi-angle and dynamic light scattering. By monitoring the degradation products of the nanogels in real-time, it was possible to identify three distinct stages of degradation: nanogel swelling, nanogel fragmentation, and nanogel fragment degradation. The results indicate that the core-shell nanogels degrade slower than their non-core-shell counterparts, possibly due to a higher degree of self-crosslinking reactions occurring in the shell. The majority of the degradation products had molecule weights below 10 kDa, which suggests that they may be cleared through the kidneys. This study provides important insights into the design and characterisation of degradable nanogels for biomedical applications, highlighting the need for accurate characterisation techniques to measure the potential biological impact of nanogel degradation products.

14.
J Mater Chem B ; 11(48): 11532-11543, 2023 12 13.
Article in English | MEDLINE | ID: mdl-37955203

ABSTRACT

Circulating, soluble polymer-drug conjugates have been utilised for many years to aid the delivery of sensitive, poorly-soluble or cytotoxic drugs, prolong circulation times or minimise side effects. Long-acting therapeutics are increasing in their healthcare importance, with intramuscular and subcutaneous administration of liquid formulations being most common. Degradable implants also offer opportunities and the use of polymer-prodrug conjugates as implant materials has not been widely reported in this context. Here, the potential for polymer-prodrug conjugates of the water soluble nucleoside reverse transciption inhibitor emtricitabine (FTC) is studied. A novel diol monomer scaffold, allowing variation of prodrug substitution, has been used to form polyesters and polycarbonates by step-growth polymerisation. Materials have been screened for physical properties that enable implant formation, studied for drug release to provide mechanistic insights, and tunable prolonged release of FTC has been demonstrated over a period of at least two weeks under relevant physiological conditions.


Subject(s)
Prodrugs , Emtricitabine , Nucleosides , Polymers , Water , DNA-Directed RNA Polymerases
15.
Child Welfare ; 91(6): 79-101, 2012.
Article in English | MEDLINE | ID: mdl-24843950

ABSTRACT

Long-term foster care (LTFC) is an enduring problem that lacks evidence of effective strategies for practice or policy. This article describes initial activities of a statewide project of the national Permanency Innovations Initiative. The authors sought to: (1) verify the relevance of children's mental health as a predictor of LTFC, (2) describe critical barriers encountered by parents of children with serious emotional disturbances, and (3) identify systems barriers that hinder permanency for this target population.


Subject(s)
Affective Symptoms/psychology , Affective Symptoms/rehabilitation , Child Welfare/psychology , Foster Home Care/psychology , Long-Term Care/psychology , Adult , Child , Child, Preschool , Cohort Studies , Education, Nonprofessional/organization & administration , Female , Humans , Male , Needs Assessment , Parent-Child Relations , Prospective Studies , Risk Assessment , Socioeconomic Factors
16.
RSC Adv ; 12(4): 2196-2206, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35425260

ABSTRACT

We report the synthesis of core-shell nanogels by sequential addition of thermoresponsive monomers; N-isopropylacrylamide (NIPAM) and N-isopropylmethacrylamide (NIPMAM). The aggregation behaviour of aqueous dispersions of these particles in the presence of salt can be tuned by varying the monomer ratio. The inclusion of degradable cross-linker bis(acryloyl)cystamine (BAC) allows the nanogels to degrade in the presence of reducing agent, with nanogels composed of a copolymer of the two monomers not showing the same high levels of degradation as the comparable core-shell particles. These levels of degradation were also seen with physiologically relevant reducing agent concentration at pH 7. Therefore, it is hoped that the aggregation of these nanogels will have applications in nanomedicine and beyond.

17.
J Mater Chem B ; 10(23): 4395-4404, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35604111

ABSTRACT

Long-acting drug delivery is a growing area of interest as it overcomes many challenges related to patient adherence to therapy and the pill burden associated with chronic illness. Injectable formulations are becoming more common and drug-releasing implants also provide several opportunities. Highly water soluble drug compounds are poor candidates for long-acting delivery. Here, the water-soluble nucleoside reverse transcriptase inhibitor emtricitabine (FTC) has been used as a novel A-B monomer in step-growth polymerisation with chloroformate functional Cn monomers, to produce new poly(carbamate/carbonate) structures with varying architecture. The polymer prodrugs were all solid at ambient temperature and have been shown to release FTC when subjected to mixed gender human plasma. Vacuum compression moulding has been used to form solid rod implants without polymer degradation; the rods show FTC release over long periods in the presence of microsomes, establishing the basis of a polymer prodrug strategy for FTC delivery.


Subject(s)
Anti-HIV Agents , HIV Infections , Prodrugs , DNA-Directed RNA Polymerases/therapeutic use , Emtricitabine/pharmacology , Emtricitabine/therapeutic use , HIV Infections/drug therapy , Humans , Nucleosides , Polymers/therapeutic use , Prodrugs/chemistry , Reverse Transcriptase Inhibitors/therapeutic use , Water
18.
Nanoscale ; 13(17): 7879-7896, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33881098

ABSTRACT

The capacity to control the dispersed or aggregated state of colloidal particles is particularly attractive for facilitating a diverse range of smart applications. For this reason, stimuli-responsive nanoparticles have garnered much attention in recent years. Colloidal systems that exhibit multi-stimuli-responsive behaviour are particularly interesting materials due to the greater spatial and temporal control they display in terms of dispersion/aggregation status; such behaviour can be exploited for implant formation, easy separation of a previously dispersed material or for the blocking of unwanted pores. This review will provide an overview of the recent publications regarding multi-stimuli-responsive microgels and hybrid core-shell nanoparticles. These polymer-based nanoparticles are highly sensitive to environmental conditions and can form aggregated clusters due to a loss of colloidal stability, triggered by temperature, pH and ionic strength stimuli. We aim to provide the reader with a discussion of the recent developments in this area, as well as an understanding of the fundamental concepts which underpin the responsive behaviour, and an exploration of their applications.

19.
J Mater Chem B ; 9(48): 9874-9884, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34870664

ABSTRACT

A significant number of new chemical entities in the drug development pipeline are poorly soluble, therefore routes that facilitate effective administration is of considerable value. Lipid nanoparticles have proved an attractive approach for drug delivery; however, challenges that include optimising drug loading and understanding the impact of drug physiochemical parameters on nanoparticle properties have limited progression. In this work, we investigate the effect of modifying the log P of a model drug on the formation and stability of lipid-based nanoparticles. A range of model drug analogues with systematically varying alkyl chains were produced using a lamivudine (nucleoside analog reverse transcriptase inhibitor) scaffold and processed into lipid nanoparticles by nanoprecipitation. Characterisation included evaluation of particle diameter, size distribution, drug loading and nanoformulation stability. A distinct correlation with the LaMer model of nucleation was observed and log P appeared to strongly influence rates of nucleation. Model drugs with high log P were uniform in particle size and distribution and offered enhanced stability. In addition, various model drug/lipid blends were produced and their physical properties were investigated using dynamic light scattering (DLS) and differential scanning calorimetry (DSC). Complex mixtures of lipids were shown to influence formulation crystallinity and strategies to form uniform and stable lipid based nanoparticles of high drug loading- through manipulation of log P are discussed.


Subject(s)
Anti-HIV Agents/chemistry , Lamivudine/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Drug Stability , Hydrophobic and Hydrophilic Interactions , Materials Testing , Models, Molecular , Molecular Structure , Particle Size
20.
bioRxiv ; 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33469585

ABSTRACT

The SARS-CoV-2 pandemic has spread at an unprecedented rate, and repurposing opportunities have been intensively studied with only limited success to date. If successful, repurposing will allow interventions to become more rapidly available than development of new chemical entities. Niclosamide has been proposed as a candidate for repurposing for SARS-CoV-2 based upon the observation that it is amongst the most potent antiviral molecules evaluated in vitro . To investigate the pharmacokinetics of niclosamide, reliable, reproducible and sensitive bioanalytical assays are required. Here, a liquid chromatography tandem mass spectrometry assay is presented which was linear from 31.25-2000 ng/mL (high dynamic range) and 0.78-100 ng/mL (low dynamic range). Accuracy and precision ranged between 97.2% and 112.5%, 100.4% and 110.0%, respectively. The presented assay should have utility in preclinical evaluation of the exposure-response relationship and may be adapted for later evaluation of niclosamide in clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL